Summation involving Clebsch–Gordan coefficients

  • Thread starter Thread starter patric44
  • Start date Start date
  • Tags Tags
    Quantum mechahnics
patric44
Messages
308
Reaction score
40
Homework Statement
summation involving Clebsch–Gordan coefficients
Relevant Equations
stated below
Hi all
I am trying to follow a derivation of something involving second quantization formalism, I am stuck at this step :
$$
\sum_{m2}\sum_{\mu1}
\bra{2,m1,2,m2}\ket{k,q}\bra{2,\mu1,2,\mu2}\ket{k,-q}\delta_{-m2,\mu1}
= (-1)^{2+m2}\frac{\sqrt{2k+1}}{\sqrt{5}}\bra{k,-q,2,m2}\ket{2,-m1}\times (-1)^{2+m2}\frac{\sqrt{2k+1}}{\sqrt{5}}\bra{k,-q,2,m2}\ket{2,\mu2}
$$
i tried to use the relation:
$$
\bra{j1,m1,j2,m2}\ket{J,M} = (-1)^{2+m2}\frac{\sqrt{2J+1}}{\sqrt{2j1+1}}\;\bra{J,-M,j2m2}\ket{j1,-m1}
$$
that will reproduce the first term but not the second,
any hint on how to start

$$
 
Physics news on Phys.org
I cannot say that I remember exactly how to do this, but I remember my QM2 class then try to consult Messiah's book. (Messiah to the rescue... :oldbiggrin:).
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?

Similar threads

Back
Top