Summation involving Clebsch–Gordan coefficients

  • Thread starter Thread starter patric44
  • Start date Start date
  • Tags Tags
    Quantum mechahnics
Click For Summary
The discussion revolves around a derivation involving Clebsch–Gordan coefficients in the context of second quantization formalism. The user is struggling with a specific summation and is attempting to apply a known relation to simplify the expression. They reference Messiah's book for guidance but express uncertainty about recalling the exact method. The conversation highlights the complexities of manipulating these coefficients and the need for clarity in the derivation steps. Assistance is sought to navigate the mathematical intricacies involved in the summation.
patric44
Messages
308
Reaction score
40
Homework Statement
summation involving Clebsch–Gordan coefficients
Relevant Equations
stated below
Hi all
I am trying to follow a derivation of something involving second quantization formalism, I am stuck at this step :
$$
\sum_{m2}\sum_{\mu1}
\bra{2,m1,2,m2}\ket{k,q}\bra{2,\mu1,2,\mu2}\ket{k,-q}\delta_{-m2,\mu1}
= (-1)^{2+m2}\frac{\sqrt{2k+1}}{\sqrt{5}}\bra{k,-q,2,m2}\ket{2,-m1}\times (-1)^{2+m2}\frac{\sqrt{2k+1}}{\sqrt{5}}\bra{k,-q,2,m2}\ket{2,\mu2}
$$
i tried to use the relation:
$$
\bra{j1,m1,j2,m2}\ket{J,M} = (-1)^{2+m2}\frac{\sqrt{2J+1}}{\sqrt{2j1+1}}\;\bra{J,-M,j2m2}\ket{j1,-m1}
$$
that will reproduce the first term but not the second,
any hint on how to start

$$
 
Physics news on Phys.org
I cannot say that I remember exactly how to do this, but I remember my QM2 class then try to consult Messiah's book. (Messiah to the rescue... :oldbiggrin:).
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
0
Views
777
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K