Sup. and Lim. Sup. are Measurable Functions

Click For Summary
SUMMARY

The discussion centers on proving the measurability of the functions ##\inf \{f_n\}##, ##\sup \{f_n\}##, ##\lim \inf \{f_n\}##, and ##\lim \sup \{f_n\}## for a sequence of measurable functions ##\{f_n\}## defined on a common domain ##E##. The key argument is that if ##\sup \{f_n\}## and ##\lim \sup \{f_n\}## are measurable, then the other functions follow due to the properties of measurable functions, specifically that the negative of a measurable function is also measurable. The proof involves demonstrating that the function ##h(x) := \sup \{f_k(x) \mid k \in \Bbb{N} \}## is measurable by showing pointwise convergence of the measurable functions ##g_n(x) = \max \{f_1(x),...,f_n(x) \}##.

PREREQUISITES
  • Understanding of measurable functions and their properties
  • Familiarity with limits and supremum in the context of sequences
  • Knowledge of pointwise convergence of functions
  • Basic concepts of real analysis, particularly related to function measurability
NEXT STEPS
  • Study the properties of measurable functions, particularly the result that the limit of measurable functions is measurable.
  • Explore the concept of pointwise limits and their implications in real analysis.
  • Investigate the proofs of the measurability of the maximum of two measurable functions.
  • Review advanced topics in measure theory, focusing on sequences of measurable functions and their limits.
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in measure theory and the properties of measurable functions.

Bashyboy
Messages
1,419
Reaction score
5

Homework Statement



For a sequence ##\{f_n\}## of measurable functions with common domain ##E##, show that the following functions are measurable: ##\inf \{f_n\}##, ##\sup \{f_n\}##, ##\lim \inf \{f_n\}##, and ##\lim \sup \{f_n\}##

Homework Equations

The Attempt at a Solution



It suffices to show that ##\sup \{f_n\}## and ##\lim \sup \{f_n\}## are measurable, since the negative of a measurable function is measurable and ##\inf \{f_n\} = - \sup \{-f_n\}## and ##\lim \inf \{f_n\} = - \lim \sup \{-f_n\}##. First we show that ##h(x) := \sup \{f_k(x) \mid k \in \Bbb{N} \}## is measurable. Define the function ##g_n(x) = \max \{f_1(x),...,f_n(x) \}## which is measurable for every ##n##. First note that ##\{f_1(x),...,f_n(x) \} \subseteq \{f_k(x) \mid k \in \Bbb{N} \}## and therefore ##\max \{f_1(x),...,f_n(x) \} \le \sup \{f_k(x) \mid k \in \Bbb{N} \}## or ##h(x) -g_n(x) \ge 0## for every ##n \in \Bbb{N}##. Let ##x \in E## and ##\epsilon > 0## be arbitrary. Then there exists an ##N \in \Bbb{N}## such that ##h(x) < f_N(x) + \epsilon##. And if ##n \ge N##, then ##g_n(x) \ge f_N(x)## or ##g_n(x) + \epsilon \ge f_N(x) + \epsilon > h(x)## or ##|h(x) - g_n(x)| < \epsilon##. This proves that ##g_n## converges pointwise to ##h##, which means that ##h## is measurable.

To see that ##\lim \sup \{f_n\}## is a measurable function, recall that for each it is defined as ##\lim_{n \infty} \sup \{f_k(x) \mid k \ge n \}## which is by definition the pointwise limit of the sequence ##(\sup \{f_k(x) \mid k \ge n \})_{n \in \Bbb{N}}## of measurable functions.Does this seem right? I solved the problem and then did a google search to find a solution. I found a couple, but proofs were slightly different from what I came up with, so I just wanted to have my solution verified.
 
Physics news on Phys.org
Bashyboy said:

Homework Statement



For a sequence ##\{f_n\}## of measurable functions with common domain ##E##, show that the following functions are measurable: ##\inf \{f_n\}##, ##\sup \{f_n\}##, ##\lim \inf \{f_n\}##, and ##\lim \sup \{f_n\}##

Homework Equations

The Attempt at a Solution



It suffices to show that ##\sup \{f_n\}## and ##\lim \sup \{f_n\}## are measurable, since the negative of a measurable function is measurable and ##\inf \{f_n\} = - \sup \{-f_n\}## and ##\lim \inf \{f_n\} = - \lim \sup \{-f_n\}##. First we show that ##h(x) := \sup \{f_k(x) \mid k \in \Bbb{N} \}## is measurable. Define the function ##g_n(x) = \max \{f_1(x),...,f_n(x) \}## which is measurable for every ##n##. First note that ##\{f_1(x),...,f_n(x) \} \subseteq \{f_k(x) \mid k \in \Bbb{N} \}## and therefore ##\max \{f_1(x),...,f_n(x) \} \le \sup \{f_k(x) \mid k \in \Bbb{N} \}## or ##h(x) -g_n(x) \ge 0## for every ##n \in \Bbb{N}##. Let ##x \in E## and ##\epsilon > 0## be arbitrary. Then there exists an ##N \in \Bbb{N}## such that ##h(x) < f_N(x) + \epsilon##. And if ##n \ge N##, then ##g_n(x) \ge f_N(x)## or ##g_n(x) + \epsilon \ge f_N(x) + \epsilon > h(x)## or ##|h(x) - g_n(x)| < \epsilon##. This proves that ##g_n## converges pointwise to ##h##, which means that ##h## is measurable.

To see that ##\lim \sup \{f_n\}## is a measurable function, recall that for each it is defined as ##\lim_{n \infty} \sup \{f_k(x) \mid k \ge n \}## which is by definition the pointwise limit of the sequence ##(\sup \{f_k(x) \mid k \ge n \})_{n \in \Bbb{N}}## of measurable functions.

Does this seem right? I solved the problem and then did a google search to find a solution. I found a couple, but proofs were slightly different from what I came up with, so I just wanted to have my solution verified.

You have used the result that
$$f_1, f_2 \; \text{measurable} \Rightarrow \; \max \{ f_1, f_2 \} \; \text{is measurable} . $$
Do you have a proof of this, or is it one of the known results you are employing?
 
Ray Vickson said:
You have used the result that
$$f_1, f_2 \; \text{measurable} \Rightarrow \; \max \{ f_1, f_2 \} \; \text{is measurable} . $$
Do you have a proof of this, or is it one of the known results you are employing?

Yes, I have proved this already.
 
Bashyboy said:

Homework Statement



For a sequence ##\{f_n\}## of measurable functions with common domain ##E##, show that the following functions are measurable: ##\inf \{f_n\}##, ##\sup \{f_n\}##, ##\lim \inf \{f_n\}##, and ##\lim \sup \{f_n\}##

Homework Equations

The Attempt at a Solution



It suffices to show that ##\sup \{f_n\}## and ##\lim \sup \{f_n\}## are measurable, since the negative of a measurable function is measurable and ##\inf \{f_n\} = - \sup \{-f_n\}## and ##\lim \inf \{f_n\} = - \lim \sup \{-f_n\}##. First we show that ##h(x) := \sup \{f_k(x) \mid k \in \Bbb{N} \}## is measurable. Define the function ##g_n(x) = \max \{f_1(x),...,f_n(x) \}## which is measurable for every ##n##. First note that ##\{f_1(x),...,f_n(x) \} \subseteq \{f_k(x) \mid k \in \Bbb{N} \}## and therefore ##\max \{f_1(x),...,f_n(x) \} \le \sup \{f_k(x) \mid k \in \Bbb{N} \}## or ##h(x) -g_n(x) \ge 0## for every ##n \in \Bbb{N}##. Let ##x \in E## and ##\epsilon > 0## be arbitrary. Then there exists an ##N \in \Bbb{N}## such that ##h(x) < f_N(x) + \epsilon##. And if ##n \ge N##, then ##g_n(x) \ge f_N(x)## or ##g_n(x) + \epsilon \ge f_N(x) + \epsilon > h(x)## or ##|h(x) - g_n(x)| < \epsilon##. This proves that ##g_n## converges pointwise to ##h##, which means that ##h## is measurable.

To see that ##\lim \sup \{f_n\}## is a measurable function, recall that for each it is defined as ##\lim_{n \infty} \sup \{f_k(x) \mid k \ge n \}## which is by definition the pointwise limit of the sequence ##(\sup \{f_k(x) \mid k \ge n \})_{n \in \Bbb{N}}## of measurable functions.Does this seem right? I solved the problem and then did a google search to find a solution. I found a couple, but proofs were slightly different from what I came up with, so I just wanted to have my solution verified.
You use for both cases, that the limit of measurable functions is measurable. Why is it? (#2 of the template is a bit empty!)
 
fresh_42 said:
You use for both cases, that the limit of measurable functions is measurable. Why is it? (#2 of the template is a bit empty!)

Well. I didn't include that because I figured that it is a standard result.
 
Bashyboy said:
Well. I didn't include that because I figured that it is a standard result.
In my book, it is proven by the result you want to prove. So order is important here!
 
fresh_42 said:
In my book, it is proven by the result you want to prove. So order is important here!

Ah! I see. What book are you referencing? By the way, given that that result has been proven, does my proof seem right?
 
  • Like
Likes   Reactions: Bashyboy

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
3K