Superposition of two one-dimensional harmonic waves

Click For Summary

Homework Help Overview

The discussion revolves around the superposition of two one-dimensional harmonic waves, focusing on calculating properties such as wavelength, propagation speed, and period, as well as determining the superposition of the waves and the positions where the amplitude is maximized.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss calculations for wavelength, speed, and period for both waves, with some expressing uncertainty about their correctness. There are attempts to derive the superposition of the waves and identify conditions for maximum amplitude. Questions arise regarding the interpretation of amplitude and the dependence on position.

Discussion Status

Some participants affirm the calculations for part (a) while others suggest revisiting the superposition results. There is a recognition of the need to clarify the relationship between amplitude and position, with ongoing exploration of how to express the maximum amplitude correctly.

Contextual Notes

Participants note that the question may require identifying multiple positions for maximum amplitude, leading to discussions about the implications of the derived formulas and the nature of the wave properties involved.

orangephysik
Messages
11
Reaction score
1
Homework Statement
(See below)
Relevant Equations
(See below)
##\mathbf {Homework ~Statement:}##
Consider the superposition of two one-dimensional harmonic waves
$$s_1(x,t)=3.5 cm \cdot cos(27.5s^{-1} \cdot t - 5.65m^{-1} \cdot x)$$
$$s_2(x,t)=3.5 cm \cdot cos(27.5s^{-1} \cdot t - 5.5m^{-1} \cdot x)$$

##\mathbf {a)}## Calculate the wavelength ##\lambda##, the propagation speed ##v## and the period ##T## for both waves
##\mathbf {b)}## Calculate the superposition ##s(x,t)## of both waves
##\mathbf {c)}## For which ##x_{max}## will the amplitude be a maximum? What are these values?

##\mathbf {Relevant ~Equation:}##
##cos(\alpha)+cos(\beta) = 2 \cdot cos(\frac{\alpha + \beta}{2}) \cdot cos(\frac{\alpha - \beta}{2})##

--------------------------------------------------------------------------------------------------------------
##\mathbf {Attempt ~at~ a ~Solution:}##
##\mathbf {a)}## Well the equations are in the form of ##u(x,t) = a \cdot cos(\omega t \mp kx)##,
whereby ##|k| = \frac{2\pi}{\lambda} = \frac{\omega}{v}##
and ##\omega = 2\pi f=\frac{2\pi}{T}##

I get
##\lambda####v####T##
##s_1(x,t)####1.11m####4.86 m/s####0.228 s##
##s_2(x,t)####1.14m####4.99 m/s####0.228 s##

##\mathbf {b)}## Using the relevant equation I got
##s_1 + s_2 =## ## 7 cm \cdot cos(\frac{55s^{-1}\cdot t-11.15 m^{-1}\cdot x}{2})cos(0.075)##

##\mathbf {c)}## I considered the case for ##cos(0)=cos(\pi)=1##
and got
##x=\frac{55s^{-1}\cdot t}{11.15 m^{-1}}##
and
##x=-\frac{2\pi - 55s^{-1}\cdot t}{11.15 m^{-1}}##
and so the maximum amplitude would then be
##x_{max}=\pm 7cm\cdot cos(0.075)##

Are my solutions correct? I remember for part (a) I got 0 points in the exam. I don't know what I did wrong.
 
Physics news on Phys.org
Your part a answers look fine to me.
In part b,
orangephysik said:
##\cos(0.075)##
Did you forget something ?
 
haruspex said:
Your part a answers look fine to me.
In part b,

Did you forget something ?
Oh right, that should be ##cos(0.075 m^{-1} \cdot x)## . I forgot the units.
So ##s_{1} + s_{2} =7 cm \cdot cos(\frac{55s^{-1}\cdot t-11.15 m^{-1}\cdot x}{2})cos(0.075m^{-1} \cdot x)##
and so the maximum would be at when ##cos(0)=1##. I get ##x_{max_{1}} = \frac{55s^{-1}\cdot t}{11.15 m}## and ##x_{max_{2}} =0##
which means the values of the maximum amplitude would then be
##7 cm \cdot cos(0.37s^{-1} \cdot t)## for ##x_{max_{1}}##
##7 cm \cdot cos(27.5s^{-1}\cdot t)## for ##x_{max_{2}}##
Since the second value is greater, then only. ##x_{max_{2}} =0## ?
(I omitted the case for ##cos(\pi)=-1## since this would give amplitudes of the same magnitude, but only with a minus sign at the front)
 
The amplitude is not time dependent. It should be a fixed value for a given position, x.
Everything that multiplies the time dependent term is the amplitude.
 
nasu said:
The amplitude is not time dependent. It should be a fixed value for a given position, x.
Everything that multiplies the time dependent term is the amplitude.
Oh right.

So
##s_{1} + s_{2} =7 cm \cdot cos(\frac{55s^{-1}\cdot t-11.15 m^{-1}\cdot x}{2})cos(0.075m^{-1} \cdot x)##
⇔##s_{1} + s_{2} =7 cm \cdot cos(27.5s^{-1}\cdot t-5.575 m^{-1}\cdot x)cos(0.075m^{-1} \cdot x)##

With ##cos(\alpha - \beta)=cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)##:

⇔##s_{1} + s_{2} =7 cm \cdot [ (cos(27.5s^{-1}\cdot t) cos(-5.575 m^{-1}\cdot x) +sin(27.5s^{-1}\cdot t)sin(-5.575 m^{-1}\cdot x) )~~cos(0.075m^{-1} \cdot x) ]##
⇔##s_{1} + s_{2} =7 cm \cdot [ cos(27.5s^{-1}\cdot t) cos(-5.575 m^{-1} \cdot x)cos(0.075m^{-1} \cdot x) +sin(27.5s^{-1}\cdot t)sin(-5.575 m^{-1}\cdot x)cos(0.075m^{-1} \cdot x) ]##

Leaving out the terms with t, the amplitude is

##A=s_{1} + s_{2} =7 cm \cdot [ cos(-5.575 m^{-1} \cdot x)cos(0.075m^{-1} \cdot x) +sin(-5.575 m^{-1})cos(0.075m^{-1} \cdot x) ]##

with ##x_{max}=0##

the maximum amplitude is ##A_{max}=7cm \cdot (1+0) = 7cm##

This should be correct?
 
orangephysik said:
Oh right.

So
##s_{1} + s_{2} =7 cm \cdot cos(\frac{55s^{-1}\cdot t-11.15 m^{-1}\cdot x}{2})cos(0.075m^{-1} \cdot x)##
⇔##s_{1} + s_{2} =7 cm \cdot cos(27.5s^{-1}\cdot t-5.575 m^{-1}\cdot x)cos(0.075m^{-1} \cdot x)##

With ##cos(\alpha - \beta)=cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)##:

⇔##s_{1} + s_{2} =7 cm \cdot [ (cos(27.5s^{-1}\cdot t) cos(-5.575 m^{-1}\cdot x) +sin(27.5s^{-1}\cdot t)sin(-5.575 m^{-1}\cdot x) )~~cos(0.075m^{-1} \cdot x) ]##
⇔##s_{1} + s_{2} =7 cm \cdot [ cos(27.5s^{-1}\cdot t) cos(-5.575 m^{-1} \cdot x)cos(0.075m^{-1} \cdot x) +sin(27.5s^{-1}\cdot t)sin(-5.575 m^{-1}\cdot x)cos(0.075m^{-1} \cdot x) ]##

Leaving out the terms with t, the amplitude is

##A=s_{1} + s_{2} =7 cm \cdot [ cos(-5.575 m^{-1} \cdot x)cos(0.075m^{-1} \cdot x) +sin(-5.575 m^{-1})cos(0.075m^{-1} \cdot x) ]##

with ##x_{max}=0##

the maximum amplitude is ##A_{max}=7cm \cdot (1+0) = 7cm##

This should be correct?
It would be simpler and less work for you if you identified the amplitude from
$$s_{1} + s_{2} =(7~{\rm cm}) \cos(27.5~{\rm s^{-1}} \cdot t - 5.575~{\rm m^{-1}} \cdot x)\cos(0.075~{\rm m^{-1}} \cdot x)$$ since the time dependence is isolated to one factor.
 
  • Like
Likes   Reactions: orangephysik and nasu
orangephysik said:
Oh right.

So
##s_{1} + s_{2} =7 cm \cdot cos(\frac{55s^{-1}\cdot t-11.15 m^{-1}\cdot x}{2})cos(0.075m^{-1} \cdot x)##
⇔##s_{1} + s_{2} =7 cm \cdot cos(27.5s^{-1}\cdot t-5.575 m^{-1}\cdot x)cos(0.075m^{-1} \cdot x)##

With ##cos(\alpha - \beta)=cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)##:

⇔##s_{1} + s_{2} =7 cm \cdot [ (cos(27.5s^{-1}\cdot t) cos(-5.575 m^{-1}\cdot x) +sin(27.5s^{-1}\cdot t)sin(-5.575 m^{-1}\cdot x) )~~cos(0.075m^{-1} \cdot x) ]##
⇔##s_{1} + s_{2} =7 cm \cdot [ cos(27.5s^{-1}\cdot t) cos(-5.575 m^{-1} \cdot x)cos(0.075m^{-1} \cdot x) +sin(27.5s^{-1}\cdot t)sin(-5.575 m^{-1}\cdot x)cos(0.075m^{-1} \cdot x) ]##

Leaving out the terms with t, the amplitude is

##A=s_{1} + s_{2} =7 cm \cdot [ cos(-5.575 m^{-1} \cdot x)cos(0.075m^{-1} \cdot x) +sin(-5.575 m^{-1})cos(0.075m^{-1} \cdot x) ]##

with ##x_{max}=0##

the maximum amplitude is ##A_{max}=7cm \cdot (1+0) = 7cm##

This should be correct?
You don't need all this. You already had the formula for the sum in post #1. All you had to do was to identify the amplitude.
 
  • Like
Likes   Reactions: orangephysik
Oh okay. Thank you :smile:
 
  • Like
Likes   Reactions: hutchphd
nasu said:
You don't need all this. You already had the formula for the sum in post #1. All you had to do was to identify the amplitude.
No, the question asks for a value of x which maximises the amplitude. In the formula obtained in post #1, because the x factor had been omitted from the cos argument, it seemed like the amplitude was independent of x.
It is unclear whether the value of the maximum amplitude is even required in the answer. ##x_{max}## has an infinite sequence of values, and that may be what is meant in "What are these values?"
 
Last edited:
  • #10
You do not need to type ##m^{-1}## and ##s^{-1}## all the time, just write that the units of ##x## is meters and ##t## is seconds. You can also write that ##s_1## and ##s_2## are in cm.

Also write
1679345518635.png

for ##\cos##
 
  • Like
Likes   Reactions: orangephysik
  • #11
haruspex said:
No, the question asks for a value of x which maximises the amplitude. In the formula obtained in post #1, because the x factor had been omitted from the cos argument, it seemed like the amplitude was independent of x.
It is unclear whether the value of the maximum amplitude is even required in the answer. ##x_{max}## has an infinite sequence of values, and that may be what is meant in "What are these values?"
You are right, he got the right form in post #3, not #1.
From this one he can find the positions of maximum amplitude.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K