Surface charge density of a plane

AI Thread Summary
The discussion focuses on calculating the surface charge density of a plane using Gauss's law. The enclosed charge is determined to be 9.6 x 10^-7 C, leading to a surface charge density of 3.04 x 10^-5 C/m² for a specified radius. Participants express difficulty in visualizing the system with multiple elements, specifically the interactions between a point charge, a plane, and a sphere. Clarifications are made regarding the positioning of the point charge relative to the sphere, impacting the calculations. The conclusion emphasizes that accurate diagrams can resolve many conceptual issues in such problems.
Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
A positive point charge of value ##q=+2\, \mu \textrm{C}## is located at coordinate point ##(0,0,5)\, \textrm{cm}##, above an infinite homogeneously charged plane located at ##z=0##. If the flux through a sphere of radius ##R=10\, \textrm{cm}## centered at the origin of coordinates is ##1,08\cdot 10^5\, \textrm{Nm}^2/\textrm{C}##, calculate the value of the surface charge density of the plane.
Relevant Equations
Gauss's Law
$$\phi_E=\dfrac{Q_{\textrm{enclosed}}}{\varepsilon_0}\Rightarrow Q_{\textrm{enclosed}}=9,6\cdot 10^{-7}\, \textrm{C}$$
$$Q_{\textrm{enclosed}}=\sigma S=\sigma \pi R^2\Rightarrow \sigma =\dfrac{Q_{\textrm{enclosed}}}{\pi (0,1^2)}=3,04\cdot 10^{-5}\, \textrm{C}/\textrm{m}^2$$

I have a lot of problems with the flux exercises. I have a hard time seeing how they act when I have more than one element in the system as in this case.
 
Last edited:
Physics news on Phys.org
Can you draw the point charge, the plane and the sphere?
 
Gordianus said:
Can you draw the point charge, the plane and the sphere?
1.png
 
Guillem_dlc said:
You have drawn the point charge outside of the sphere. Is this accurate according to the problem formulation?
 
Orodruin said:
You have drawn the point charge outside of the sphere. Is this accurate according to the problem formulation?
No, I see now. I think that I have the solution:

$$\phi_E = \dfrac{Q_{\textrm{enclosed}}}{\varepsilon_0} \Rightarrow Q_{\textrm{enclosed}}=9,6\cdot 10^{-7}\, \textrm{C}$$
$$\phi_{\textrm{enclosed}}=\sigma S=\sigma \pi R^2+q\Rightarrow \sigma=\dfrac{Q_{\textrm{enclosed}}-q}{S}=-33\, \mu \textrm{C}/\textrm{m}^2$$
 
A good drawing fixes many problems.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top