Surface charge density of a plane

Click For Summary
SUMMARY

The discussion focuses on calculating the surface charge density of a plane using the formula for electric flux, specifically applying Gauss's Law. The enclosed charge is determined to be \(9.6 \times 10^{-7}\) C, leading to a surface charge density of \(3.04 \times 10^{-5}\) C/m² for a plane with a radius of 0.1 m. Additionally, the user corrects their understanding by incorporating a point charge into the calculation, resulting in a new surface charge density of \(-33 \, \mu\)C/m². Visual aids, such as diagrams of the point charge, plane, and sphere, are emphasized as crucial for grasping the problem.

PREREQUISITES
  • Understanding of Gauss's Law
  • Familiarity with electric flux concepts
  • Basic knowledge of charge density calculations
  • Ability to interpret and create diagrams of electric fields
NEXT STEPS
  • Study the implications of Gauss's Law in different geometries
  • Learn about electric field calculations for point charges
  • Explore the relationship between charge density and electric flux
  • Practice drawing electric field diagrams for complex charge distributions
USEFUL FOR

Students and educators in physics, particularly those studying electromagnetism, as well as anyone looking to deepen their understanding of electric fields and charge distributions.

Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
A positive point charge of value ##q=+2\, \mu \textrm{C}## is located at coordinate point ##(0,0,5)\, \textrm{cm}##, above an infinite homogeneously charged plane located at ##z=0##. If the flux through a sphere of radius ##R=10\, \textrm{cm}## centered at the origin of coordinates is ##1,08\cdot 10^5\, \textrm{Nm}^2/\textrm{C}##, calculate the value of the surface charge density of the plane.
Relevant Equations
Gauss's Law
$$\phi_E=\dfrac{Q_{\textrm{enclosed}}}{\varepsilon_0}\Rightarrow Q_{\textrm{enclosed}}=9,6\cdot 10^{-7}\, \textrm{C}$$
$$Q_{\textrm{enclosed}}=\sigma S=\sigma \pi R^2\Rightarrow \sigma =\dfrac{Q_{\textrm{enclosed}}}{\pi (0,1^2)}=3,04\cdot 10^{-5}\, \textrm{C}/\textrm{m}^2$$

I have a lot of problems with the flux exercises. I have a hard time seeing how they act when I have more than one element in the system as in this case.
 
Last edited:
Physics news on Phys.org
Can you draw the point charge, the plane and the sphere?
 
Gordianus said:
Can you draw the point charge, the plane and the sphere?
1.png
 
Guillem_dlc said:
You have drawn the point charge outside of the sphere. Is this accurate according to the problem formulation?
 
Orodruin said:
You have drawn the point charge outside of the sphere. Is this accurate according to the problem formulation?
No, I see now. I think that I have the solution:

$$\phi_E = \dfrac{Q_{\textrm{enclosed}}}{\varepsilon_0} \Rightarrow Q_{\textrm{enclosed}}=9,6\cdot 10^{-7}\, \textrm{C}$$
$$\phi_{\textrm{enclosed}}=\sigma S=\sigma \pi R^2+q\Rightarrow \sigma=\dfrac{Q_{\textrm{enclosed}}-q}{S}=-33\, \mu \textrm{C}/\textrm{m}^2$$
 
A good drawing fixes many problems.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K