What is Sylow's theorem and how does it relate to finite groups?

  • Thread starter Thread starter halvizo1031
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
Sylow's theorem states that if a finite group G has an order divisible by a prime p, then G contains at least one subgroup of order p^m, where p^m is the highest power of p dividing |G|. The proof involves considering the action of G on subsets of size p^m and using properties of orbit sizes and stabilizers. The discussion highlights the complexity of the proof and requests simpler explanations and examples for better understanding. The theorem is significant in group theory as it provides insight into the structure of finite groups. Understanding Sylow's theorem is crucial for studying the composition and classification of finite groups.
halvizo1031
Messages
77
Reaction score
0

Homework Statement


LET G BE A FINITE GROUP WHOSE ORDER IS DIVISIBLE BY THE PRIME P. SUPPOSE P^M IS THE HIGHEST POWER OF P WHICH IS A FACTOR OF |G|AND SET K=(|G|/P^M), THEN THE GROUP G CONTAINS AT LEAST ONE SUBGROUP OF |P^M|.

I have the proof but can someone explain it in simpler terms? Maybe even a few examples please.



Homework Equations





The Attempt at a Solution


Let X denote the collect of all subsets of G which have p^m elements and let G act on X by left translation so that the group element g is in G sends the subset A in X to gA. The size of X is the binomial coefficient kp^m choose p^m which is not divisible by p. Hence, there must be an orbit G(A) whose size is not a multiple of p. We have |G|=|G(A)|*|G(subA)|, consequently |G(subA)| is divisible by p^m. Now G(subA) is the stabilizer of A, so if a is in A and g is in G(subA), the ga is in A. This means that the whole right coset of G(subA)a is contained in A whenever a is in A and |G(subA)| cannot exceed p^m. Therefore, G(subA) is a subgroup of G which has order p^m.
 
Last edited:
Physics news on Phys.org
The statement is pretty simple. It says that if you have a Group of order n, where n has factoriaztion p^k * m, where p is a prime number, then there exists a subgroup of order p^k.

The proof is a bit tricky, since it's in direct. What about it is confusing you?
 
could you maybe give me a few examples? It makes sense but the proof is a bit rough for me.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K