Symmetry Groups Algebras Commutators Conserved Quantities

friend
Messages
1,448
Reaction score
9
Symmetry, Groups, Algebras, Commutators, Conserved Quantities

OK, maybe this is asking too much, hopefully not.

I'm trying to understand the connection between all of these constructions. I wonder if a summary about these interrelationship can be given.

If I understand what I'm reading, there is a connection between finite groups and algebras, though I think I'm confused between what objects are involved in each and what each acts upon if anything. And I understand that there is a conserved quantity for every symmetry, but this is only for symmetries of Action integral, right? What I'm not sure about, though, is whether there is a connection between algebras and commutation relations. Any insight you could give in these areas would be appreciated. Thanks.
 
Last edited:
Physics news on Phys.org


friend said:
OK, maybe this is asking too much, hopefully not.

I'm trying to understand the connection between all of these constructions. I wonder if a summary about these interrelationship can be given.

If I understand what I'm reading, there is a connection between finite groups and algebras, though I think I'm confused between what objects are involved in each and what each acts upon if anything. And I understand that there is a conserved quantity for every symmetry, but this is only for symmetries of Action integral, right? What I'm not sure about, though, is whether there is a connection between algebras and commutation relations. Any insight you could give in these areas would be appreciated. Thanks.

For example, as I understand it, conserved quantities only apply to continuous symmetries of the Action integral. Or are there conserved quantities for finite symmetries as well?

I thought I heard people say that the commutation relations define the algebra, is this right?

Moderator: Do you think this thread should be moved to Quantum Physics Forum? That is what is motivating these questions.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
18
Views
2K
Replies
17
Views
8K
Replies
13
Views
567
Replies
1
Views
2K
Replies
3
Views
432
Replies
8
Views
3K
Replies
7
Views
3K
Back
Top