Systems of equations - further understanding

Click For Summary
SUMMARY

This discussion focuses on the analysis of systems of equations, specifically the conditions under which a system has infinite solutions, unique solutions, or no solutions. The participants analyze the system represented by the equations x + 2y - 3z = a, 3x - y + 2z = b, and x - 5y + 8z = c, concluding that infinite solutions occur when 2a - b + c = 0, while no solutions arise when it is not equal to zero. The discussion also touches on the rank-nullity theorem concerning the matrix A with dimensions 3x4 and rank 1, and the implications of infinite solutions for related equations.

PREREQUISITES
  • Understanding of linear algebra concepts, particularly systems of equations
  • Familiarity with matrix operations and row reduction techniques
  • Knowledge of the rank-nullity theorem in linear algebra
  • Experience with mathematical software tools like Maple for matrix computations
NEXT STEPS
  • Study the implications of the rank-nullity theorem in greater detail
  • Learn about the conditions for unique and infinite solutions in systems of linear equations
  • Explore the use of mathematical software like Maple for solving systems of equations
  • Investigate examples of linear dependence and independence in vector spaces
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as educators looking for insights into teaching systems of equations and their solutions.

Yankel
Messages
390
Reaction score
0
Hello again,

I have a few more questions regarding systems of equations, I will collect them all here in one post since they are small.

1. The first is the following system:

x+2y-3z=a
3x-y+2z=b
x-5y+8z=c

I need to determine the relation between a,b and c for which the system has infinite solution, unique solution or no solution. I did some row operations and got:

\[\begin{pmatrix} 1 &2 &-3 &a \\ 0 &-7 &11 &b-3a \\ 0 &0 &0 &2a-b+c \end{pmatrix}\]

I conclude that when 2a-b+c=0 there is an infinite solution and when it ain't equal 0, there is no solution. A unique solution is not possible. However, Maple got the same matrix but claims that there is no solution either way...is it a computer bug or I am mistaken ?

2. A is a matrix over the R field with dimensions 3X4. The rank of A is 1. How many degrees of freedom (parameters, i.e. t,s,...) does the family of solutions of Ax=0 has ?

3. If Ax=b has infinite solution, then Ax=c has infinite solution or no solution. True or False ?

Thanks a lot !
:)
 
Physics news on Phys.org
Yankel said:
Hello again,

I have a few more questions regarding systems of equations, I will collect them all here in one post since they are small.

1. The first is the following system:

x+2y-3z=a
3x-y+2z=b
x-5y+8z=c

I need to determine the relation between a,b and c for which the system has infinite solution, unique solution or no solution. I did some row operations and got:

\[\begin{pmatrix} 1 &2 &-3 &a \\ 0 &-7 &11 &b-3a \\ 0 &0 &0 &2a-b+c \end{pmatrix}\]

I conclude that when 2a-b+c=0 there is an infinite solution and when it ain't equal 0, there is no solution. A unique solution is not possible. However, Maple got the same matrix but claims that there is no solution either way...is it a computer bug or I am mistaken ?

2. A is a matrix over the R field with dimensions 3X4. The rank of A is 1. How many degrees of freedom (parameters, i.e. t,s,...) does the family of solutions of Ax=0 has ?

3. If Ax=b has infinite solution, then Ax=c has infinite solution or no solution. True or False ?

Thanks a lot !
:)
Hello,

1. For it to be infinity soloution you want them to be linear dependen
2. Dim ker (A) Tells you how many parameters there is,

edit: 1. Yes it looks correct for me what you Said

notice that I have not checked your progress!

Regards,
$$|\pi\rangle$$
 
Last edited:
Umm...don't trust computers, they lie to you.

OBVIOUSLY, there is the solution (0,0,0) when a = b = c = 0. perhaps not as obviously, there are also the solutions of the form:

t(-1,11,7) for any real number t, when a = b = c = 0.

Thus given some vector (a,b,c) for which 2a - b + c = 0 (like, for example: (1,1,-1)), we can conclude we have the infinite number of solutions:

(2/7,13/7,1) + t(-1,11,7), since:

A(2/7,13/7,1) = (2/7 + 26/7 - 3, 6/7 - 13/7 + 2,2/7 - 65/7 + 8) = (1,1,-1) and

A(t(-1,11,7)) = t(A(-1,11,7)) = t(0,0,0) = (0,0,0)

So clearly Maple is wrong about the number of solutions.

For #2, the rank-nullity theorem tells you that:

rank(A) + nullity(A) = 4. See also Petrus' answer above, note that, by definition:

nullity(A) = dim(ker(A))

For #3: on these types of problems it's good to play with some simple examples.

Try using:

$A = \begin{bmatrix}1&0\\0&0 \end{bmatrix}$

$b = \begin{bmatrix}1\\0 \end{bmatrix}$

and

$c = \begin{bmatrix}2\\0 \end{bmatrix}$

or

$c = \begin{bmatrix}0\\2 \end{bmatrix}$

Now suppose the statement is false:

this means that we have a UNIQUE solution x0 of Ax = c, but infinitely many of Ax = b.

Pick two DIFFERENT solutions of Ax = b, say x = x1, x2.

Since these are different solutions, x1 - x2 ≠ 0, so x1 - x2 + x0 ≠ x0.

Now A(x1 - x2 + x0) = A(x1) - A(x2) + A(x0​) = b - b + c =...?
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K