MHB Systems of equations - further understanding

Yankel
Messages
390
Reaction score
0
Hello again,

I have a few more questions regarding systems of equations, I will collect them all here in one post since they are small.

1. The first is the following system:

x+2y-3z=a
3x-y+2z=b
x-5y+8z=c

I need to determine the relation between a,b and c for which the system has infinite solution, unique solution or no solution. I did some row operations and got:

\[\begin{pmatrix} 1 &2 &-3 &a \\ 0 &-7 &11 &b-3a \\ 0 &0 &0 &2a-b+c \end{pmatrix}\]

I conclude that when 2a-b+c=0 there is an infinite solution and when it ain't equal 0, there is no solution. A unique solution is not possible. However, Maple got the same matrix but claims that there is no solution either way...is it a computer bug or I am mistaken ?

2. A is a matrix over the R field with dimensions 3X4. The rank of A is 1. How many degrees of freedom (parameters, i.e. t,s,...) does the family of solutions of Ax=0 has ?

3. If Ax=b has infinite solution, then Ax=c has infinite solution or no solution. True or False ?

Thanks a lot !
:)
 
Physics news on Phys.org
Yankel said:
Hello again,

I have a few more questions regarding systems of equations, I will collect them all here in one post since they are small.

1. The first is the following system:

x+2y-3z=a
3x-y+2z=b
x-5y+8z=c

I need to determine the relation between a,b and c for which the system has infinite solution, unique solution or no solution. I did some row operations and got:

\[\begin{pmatrix} 1 &2 &-3 &a \\ 0 &-7 &11 &b-3a \\ 0 &0 &0 &2a-b+c \end{pmatrix}\]

I conclude that when 2a-b+c=0 there is an infinite solution and when it ain't equal 0, there is no solution. A unique solution is not possible. However, Maple got the same matrix but claims that there is no solution either way...is it a computer bug or I am mistaken ?

2. A is a matrix over the R field with dimensions 3X4. The rank of A is 1. How many degrees of freedom (parameters, i.e. t,s,...) does the family of solutions of Ax=0 has ?

3. If Ax=b has infinite solution, then Ax=c has infinite solution or no solution. True or False ?

Thanks a lot !
:)
Hello,

1. For it to be infinity soloution you want them to be linear dependen
2. Dim ker (A) Tells you how many parameters there is,

edit: 1. Yes it looks correct for me what you Said

notice that I have not checked your progress!

Regards,
$$|\pi\rangle$$
 
Last edited:
Umm...don't trust computers, they lie to you.

OBVIOUSLY, there is the solution (0,0,0) when a = b = c = 0. perhaps not as obviously, there are also the solutions of the form:

t(-1,11,7) for any real number t, when a = b = c = 0.

Thus given some vector (a,b,c) for which 2a - b + c = 0 (like, for example: (1,1,-1)), we can conclude we have the infinite number of solutions:

(2/7,13/7,1) + t(-1,11,7), since:

A(2/7,13/7,1) = (2/7 + 26/7 - 3, 6/7 - 13/7 + 2,2/7 - 65/7 + 8) = (1,1,-1) and

A(t(-1,11,7)) = t(A(-1,11,7)) = t(0,0,0) = (0,0,0)

So clearly Maple is wrong about the number of solutions.

For #2, the rank-nullity theorem tells you that:

rank(A) + nullity(A) = 4. See also Petrus' answer above, note that, by definition:

nullity(A) = dim(ker(A))

For #3: on these types of problems it's good to play with some simple examples.

Try using:

$A = \begin{bmatrix}1&0\\0&0 \end{bmatrix}$

$b = \begin{bmatrix}1\\0 \end{bmatrix}$

and

$c = \begin{bmatrix}2\\0 \end{bmatrix}$

or

$c = \begin{bmatrix}0\\2 \end{bmatrix}$

Now suppose the statement is false:

this means that we have a UNIQUE solution x0 of Ax = c, but infinitely many of Ax = b.

Pick two DIFFERENT solutions of Ax = b, say x = x1, x2.

Since these are different solutions, x1 - x2 ≠ 0, so x1 - x2 + x0 ≠ x0.

Now A(x1 - x2 + x0) = A(x1) - A(x2) + A(x0​) = b - b + c =...?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top