Tainter Damper Figure: Analyzing Forces

AI Thread Summary
The discussion centers on the calculations related to forces acting on a Tainter damper, including horizontal and vertical forces, and the center of pressure. The calculations yield a horizontal force of approximately 3767.04 kN and a vertical force of about 2632.77 kN, with an angle of 34.95 degrees between the forces. There is a noted confusion regarding the formula for the center of pressure, with participants clarifying that the formula used was incorrect. The conversation also touches on the implications of the damper's geometry on buoyancy calculations and the need for accurate area calculations, highlighting a potential typo in the area formula. Overall, the thread emphasizes the importance of precise calculations and understanding of fluid mechanics principles in this context.
Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
1. A "Tainter" damper has the shape of a partial cylinder as shown in the figure. The width of the damper is ##12\, \textrm{m}##. Note that the height of the water corresponds to the height of the pivot point of the gate. Calculate the horizontal force in ##\textrm{kN}##. Other data: ##\rho =1000\, \textrm{kg}/\textrm{m}##, ##I_{xx}=bh^3/12##

2. Calculate the vertical force in ##\textrm{kN}##

3. Calculate the total force in ##\textrm{kN}##

4. Calculate angle of total force in degrees

5. Calculate the momentum of the horizontal force in ##\textrm{kNm}##.
Relevant Equations
##F=pA, p=\rho h##
Figure:
DA0F163B-E87E-4995-BDF6-A767E207A674.jpeg


Attempt at a solution:
$$b=12\, \textrm{m},\quad H=8\, \textrm{m}$$
a) $$F_H=p_{CG}A=3767040\, \textrm{N}=\boxed{3767,04\, \textrm{kN}}$$
$$A=8\cdot 12=96\, \textrm{m}^2$$
$$p_{CG}=\rho_g h_{cg}=39240\, \textrm{Pa}$$
b) $$F_V=mg=\rho_g V$$
We calculate ##\theta \rightarrow 8=10\cdot \sin \theta \rightarrow \dfrac{8}{10}=\sin \theta \rightarrow \theta =53,13\, \textrm{º}##
$$x=10\cdot \cos (\theta)=6\, \textrm{m}$$
We calculate ##A\rightarrow A=\dfrac{\pi r^2\cdot 53,13}{360}=\dfrac{6\cdot 8}{2}=22,3647\, \textrm{m}^2##
$$F_V=\rho_gV=\rho_g bA=\boxed{2632,77\, \textrm{KN}}$$
c) First of all we find ##\alpha## (angle between forces).
$$\alpha =\arctan \dfrac{F_V}{F_H}=34,95\, \textrm{º}$$
$$F=\dfrac{F_H}{\cos \alpha}=\boxed{4595,88\, \textrm{kN}}$$
d) $$\boxed{\alpha =34,95\, \textrm{º}}$$
e) First and foremost, we must locate the centre of pressure (CP).
$$y_{CP}=-\dfrac{\rho_g I_{xx}}{F_H}=-1,333\, \textrm{m}$$
$$M_o=F_H\cdot h_{cp}=F_H\cdot (4+1,333)=\boxed{20089,62\, \textrm{kN}\cdot \textrm{m}}$$
Does this one look good to you?
 
Physics news on Phys.org
Think again about the volume displaced in part b.
 
haruspex said:
Think again about the volume displaced in part b.
Wouldn't this be it, or would it affect everything? I can see well how I've done it, can't I?
 
Okay, maybe like this?
9C164CE5-375A-4188-80EA-DB3FECBF1C1F.jpeg
 
Guillem_dlc said:
Figure:
View attachment 316081

e) First and foremost, we must locate the centre of pressure (CP).
$$y_{CP}=-\dfrac{\rho_g I_{xx}}{F_H}=-1,333\, \textrm{m}$$
Again... That is not the formula for ##y_{CP}##. What you are using is the formula for ##\bar y - y_{CP}##. They are not the same thing. It's obvious you understand that is not ##y_{cp}## from the remainder of your calculation, which is why it's confusing that you keep calling it that.

As for everything else, it seems to check out.
 
Last edited:
  • Like
Likes Guillem_dlc
Guillem_dlc said:
Okay, maybe like this?
View attachment 316091
No.
It's a bit tricky. Suppose, instead of the sector of a circle given, the damper were to continue further to the right. Would that change the force? Would it change your calculation?
The area you have shaded would be correct if there were also water to the right. In that scenario, can you see a way to split the damper into two parts such that the water on the left is responsible for the buoyancy force on the left part and the water on the right responsible for that on the right part?
 
haruspex said:
No.
It's a bit tricky. Suppose, instead of the sector of a circle given, the damper were to continue further to the right. Would that change the force? Would it change your calculation?
The area you have shaded would be correct if there were also water to the right. In that scenario, can you see a way to split the damper into two parts such that the water on the left is responsible for the buoyancy force on the left part and the water on the right responsible for that on the right part?
And what I have marked in the figure at the beginning of everything, neither?
 
Guillem_dlc said:
And what I have marked in the figure at the beginning of everything, neither?
What is highlighted in post #1 is correct, but I looked at your working and you do not seem to have subtracted the triangular portion. I see ##A=\pi r^2\frac{\theta}{2\pi}##.
 
haruspex said:
What is highlighted in post #1 is correct, but I looked at your working and you do not seem to have subtracted the triangular portion. I see ##A=\pi r^2\frac{\theta}{2\pi}##.
They did. it's a typo.

Guillem_dlc said:
We calculate ##A\rightarrow A=\dfrac{\pi r^2\cdot 53,13}{360}=\dfrac{6\cdot 8}{2}=22,3647\, \textrm{m}^2##
Should read:

Guillem_dlc said:
We calculate ##A\rightarrow A=\dfrac{\pi r^2\cdot 53,13}{360}-\dfrac{6\cdot 8}{2}=22,3647\, \textrm{m}^2##
 
  • Like
Likes Guillem_dlc and haruspex
  • #10
erobz said:
They did. it's a typo. Should read:
Aha!
 
  • Like
Likes Guillem_dlc and erobz
  • #11
The only potential issue I can see with this method of converting the problem (which, isn't an issue for the questions you had to answer), what would you do if you actually had to locate the center of pressure ##CP (x_{cp},y_{cp} )##? I have a feeling you would find it in a place where it doesn't seem like it should be w.r.t the actual scenario. The question: Is it just a simple transformation back to the actual scenario?
 
Last edited:

Similar threads

Replies
7
Views
1K
2
Replies
93
Views
14K
Replies
55
Views
10K
4
Replies
175
Views
25K
2
Replies
71
Views
12K
Back
Top