• Support PF! Buy your school textbooks, materials and every day products Here!

Tangent Lines/Instaneous Velocity

  • Thread starter pebbles3
  • Start date
  • #1
9
0

Homework Statement


I need to use the following data table to:
1. make a position-time graph
2. draw tangents (it isn't specified how many, but a previous practice question only drew 3 out of a possible 5)
3. create a time-velocity table.

0 --- 0
0.25 --- 0.29
0.50 --- 1.15
0.75 --- 2.59
1.00 --- 4.60
1.25 --- 7.19
1.50 --- 10.35


Homework Equations


vinst = d/t


The Attempt at a Solution


The position-time graph is attached. I think that's right, but what I'm really having trouble with is drawing the tangent lines and calculating the instantaneous velocity. I feel like I didn't draw the tangents right but I'm not sure how to do it differently.
Here's my calculations:
0.50: 7 / 1.75-0.25 = 3.7
1.00: 10 / 1.65-0.50 = 5.5
1.50: 10 / 1.50-0.75 = 6.2
 

Attachments

Answers and Replies

  • #2
Andrew Mason
Science Advisor
Homework Helper
7,583
346

Homework Statement



The position-time graph is attached. I think that's right, but what I'm really having trouble with is drawing the tangent lines and calculating the instantaneous velocity. I feel like I didn't draw the tangents right but I'm not sure how to do it differently.
Here's my calculations:
0.50: 7 / 1.75-0.25 = 3.7
1.00: 10 / 1.65-0.50 = 5.5
1.50: 10 / 1.50-0.75 = 6.2
A tangent line at a certain point on the graph is a straight line that touches the graph only at that point.

What does the slope of the tangent line on a distance-time graph represent? Does that help you determine points for a velocity-time graph?

AM
 
  • #3
20,131
4,208

Homework Statement


I need to use the following data table to:
1. make a position-time graph
2. draw tangents (it isn't specified how many, but a previous practice question only drew 3 out of a possible 5)
3. create a time-velocity table.

0 --- 0
0.25 --- 0.29
0.50 --- 1.15
0.75 --- 2.59
1.00 --- 4.60
1.25 --- 7.19
1.50 --- 10.35


Homework Equations


vinst = d/t


The Attempt at a Solution


The position-time graph is attached. I think that's right, but what I'm really having trouble with is drawing the tangent lines and calculating the instantaneous velocity. I feel like I didn't draw the tangents right but I'm not sure how to do it differently.
Here's my calculations:
0.50: 7 / 1.75-0.25 = 3.7
1.00: 10 / 1.65-0.50 = 5.5
1.50: 10 / 1.50-0.75 = 6.2
It seems to me you did an excellent job, and have the right idea. Nice work.
 
  • #4
Andrew Mason
Science Advisor
Homework Helper
7,583
346
Your tangent lines (supposedly tangent at .5, 1.0 and 1.5) are not touching at those points. This affects the calculation of velocity at those points. If you plot the velocity vs. time you will see this. I would choose a tangent at t=1.25 since you do not have any points after t=1.5.

AM
 
  • #5
9
0
Your tangent lines (supposedly tangent at .5, 1.0 and 1.5) are not touching at those points. This affects the calculation of velocity at those points. If you plot the velocity vs. time you will see this. I would choose a tangent at t=1.25 since you do not have any points after t=1.5.

AM
Thanks for the help.
Do you mean do a tangent at 1.25 instead of at 1.50 or do both?
 
  • #6
20,131
4,208
Your tangent lines (supposedly tangent at .5, 1.0 and 1.5) are not touching at those points. This affects the calculation of velocity at those points. If you plot the velocity vs. time you will see this. I would choose a tangent at t=1.25 since you do not have any points after t=1.5.

AM
Gee. It looks to me like they are pretty tangent at these points. The tangent lines aren't perfect, but they look pretty good. Yet, when I calculated the velocities using central finite difference approximations, I got a straight line as a function of time, with all the velocities calculated from the drawn tangents lying below the (more accurate) numerically calculated velocities.

Chet
 
  • #7
Andrew Mason
Science Advisor
Homework Helper
7,583
346
Thanks for the help.
Do you mean do a tangent at 1.25 instead of at 1.50 or do both?
The problem with drawing a tangent at 1.5 is that you don't know what the line looks like after. I would use 1.25 but you can use as many as you like: you can use any points in between 0 and 1.5.

AM
 
  • #8
Andrew Mason
Science Advisor
Homework Helper
7,583
346
pebbles3:

Actually, the real problem is with your calculations. The slope of the tangent you have drawn at t=1.0 is 10/(1.65-.50) = 9.1 not 5.5. The slope of the tangent as you have drawn it at 1.5 is 10.35/(1.5-.75) = 13.8 (the point is (10.35, 1.5)). Check the slope calculation for t=.5. That should give you an accurate v-t graph.

You seem to be dividing by the first term in the denominator and then subtracting the second!! Slope is rise/run

AM
 
Last edited:
  • #9
9
0
pebbles3:

Actually, the real problem is with your calculations. The slope of the tangent you have drawn at t=1.0 is 10/(1.65-.50) = 9.1 not 5.5. The slope of the tangent as you have drawn it at 1.5 is 10.35/(1.5-.75) = 13.8 (the point is (10.35, 1.5)). Check the slope calculation for t=.5. That should give you an accurate v-t graph.

You seem to be dividing by the first term in the denominator and then subtracting the second!! Slope is rise/run

AM
Ah I see, thank you!
 

Related Threads on Tangent Lines/Instaneous Velocity

  • Last Post
Replies
3
Views
2K
Replies
5
Views
26K
  • Last Post
Replies
13
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
8
Views
2K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
2
Views
3K
  • Last Post
2
Replies
31
Views
3K
  • Last Post
Replies
6
Views
2K
Top