Taylor Expansion for fm+1n+1 - Tips and Tricks

  • Thread starter oxxiissiixxo
  • Start date
  • Tags
    Expansion
  • #1

Homework Statement


how to do taylor expansion for fm+1n+1; f(t,x) with sub script m+1 and a super script n+1


Homework Equations


I know how to do taylor expansion for fm+1 and fn+1, but not fm+1n+1


The Attempt at a Solution

 
  • #2
Can you explain what you mean by fm+1n+1
 
  • #3
I am doing the finite differencing for a pde and I am trying to expand the term f_m+1 with a superscript n+1 around say (f_m with a superscript n) to see whether or not the pde is consistent.
For forward in time, a partial derivative of time (df/dt)will be rewrite as [(f_m with a superscript n+1) - (f_m with a superscript n)]/(delta t)
Similarly, if i want to do forward differencing in space, df/dx can be rewrite as [(f_m+1 with a superscript n) - (f_m with a superscript n)]/(delta x)
I know how to do taylor expansion for (f_m+1 with a superscript n) around (f_m with a superscript n) and taylor expansion for (f_m with a superscript n+1) around (f_m with a superscript n). However, I do not know how to deal with f_m+1 with a superscript n+1. How should i do the taylor expansion. Thank you!
 

Suggested for: Taylor Expansion for fm+1n+1 - Tips and Tricks

Replies
12
Views
1K
Replies
2
Views
544
Replies
7
Views
596
Replies
4
Views
707
Replies
1
Views
789
Replies
1
Views
596
Back
Top