Taylor expansion for matrix logarithm

Click For Summary
The discussion focuses on the Taylor expansion of the logarithm of positive hermitian matrices A and B, specifically the formula for log(A+tB) at t=0. A user seeks clarification on the derivation of this formula, which includes an integral term and lacks a source or proof. Another participant suggests an alternative approach using the property of logarithms, but notes that the original formula may not hold unless matrices A and B commute. The conversation emphasizes the need for a reliable derivation or reference for the initial claim. The topic remains centered on the mathematical properties and derivations related to matrix logarithms.
Backpacker
Messages
9
Reaction score
0
A paper I'm reading states the that: for positive hermitian matrices A and B, the Taylor expansion of \log(A+tB) at t=0 is

\log(A+tB)=\log(A) + t\int_0^\infty \frac{1}{B+zI}A \frac{1}{B+zI} dz + \mathcal{O}(t^2).

However, there is no source or proof given, and I cannot seem to find a derivation of this identity anywhere! Any help would be appreciated. Thanks.
 
Last edited:
Physics news on Phys.org
Backpacker said:
A paper I'm reading states the that: for positive hermitian matrices A and B, the Taylor expansion of \log(A+tB) at t=0 is

\log(A+tB)=\log(A) + t\int_0^\infty \frac{1}{B+zI}A \frac{1}{B+zI} dz + \mathcal{O}(t^2).

However, there is no source or proof given, and I cannot seem to find a derivation of this identity anywhere! Any help would be appreciated. Thanks.

Welcome to PF, Backpacker! :smile:

I don't recognize your formula, but:

$$\log(A+tB)=\log(A(I+tA^{-1}B)= \log A + \log(I+tA^{-1}B) = \log A + tA^{-1}B + \mathcal{O}(t^2)$$
 
I like Serena said:
$$\log(A(I+tA^{-1}B)= \log A + \log(I+tA^{-1}B) $$
This doesn't seem quite right, unless ## A ## and ## B ## commute.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 24 ·
Replies
24
Views
12K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
12K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K