Taylor expansion of an electrostatics problem

Click For Summary
SUMMARY

The discussion focuses on applying the Taylor series expansion to approximate the electric field due to six charges positioned at the corners of a regular hexagon in the xy-plane. The electric field along the x-axis is expressed as E_{x}= \displaystyle\sum_{n=1}^{6} \frac{x-acos\frac{k\pi}{3}}{[x^{2}-2axcos\frac{k\pi}{3}+a^{2}]^{3/2}}. The goal is to simplify this expression under the condition where x>>a, leading to the approximation E_{x}= \frac{1}{4\pi\epsilon_{0}}[{\frac{6q}{x^{2}}+\frac{9qa^{2}}{2x^{4}}}. The key insight is that the small quantity a/x allows for neglecting higher-order terms in the Taylor series, which simplifies the calculations significantly.

PREREQUISITES
  • Understanding of electric fields and Coulomb's law
  • Familiarity with Taylor series expansions
  • Basic knowledge of LaTeX for mathematical expressions
  • Proficiency in calculus, particularly differentiation
NEXT STEPS
  • Study the application of Taylor series in physics problems
  • Learn about the derivation of electric fields from point charges
  • Explore higher-order approximations in series expansions
  • Practice using LaTeX for formatting mathematical equations
USEFUL FOR

Students and educators in physics, particularly those focusing on electrostatics, as well as anyone interested in mastering the application of Taylor series in physical problems.

mmpstudent
Messages
16
Reaction score
0

Homework Statement



The problem has six charges that are at the corners of a regular hexagon in the xy plane, each charge a distance a from the origin. I have already solved for the electric fields in the x and y direction and now am trying to apply an approximation for the field on the x-axis at where x>>a. the field along the x-axis is

E_{x}= \displaystyle\sum_{n=1}^{6} \frac{x-acos\frac{k\pi}{3}}{[x^{2}-2axcos\frac{k\pi}{3}+a^{2}]^{3/2}}

I am supposed to use a power series in the small quantity a/x using the method of taylor series to get to

E_{x}= \frac{1}{4\pi\epsilon_{0}}[{\frac{6q}{x^{2}}+\frac{9qa^{2}}{2x^{4}}}]

I haven't done this level math in a long time and I am sure that it is not too difficult, but I don't know what it means in the small quantity a/x. Do I just set x>>a in the efield equation and go about my business, if so, I don't understand where the a^2 term comes from in the numerator.
 
Last edited:
Physics news on Phys.org
mmpstudent said:

Homework Statement



The problem has six charges that are at the corners of a regular hexagon in the xy plane, each charge a distance a from the origin. I have already solved for the electric fields in the x and y direction and now am trying to apply an approximation for the field on the x-axis at where x>>a. the field along the x-axis is

E_{x}= \displaystyle\sum_{n=1}^{6} \frac{x-acos\frac{k\pi}{3}}{[x^{2}-2axcos\frac{k\pi}{3}+a^{2}]^{3/2}}

I am supposed to use a power series in the small quantity a/x using the method of taylor series to get to

E_{x}= \frac{1}{4\pi\epsilon_{0}}{\frac{6q}{x^{2}}+\frac{9qa^{2}}{2x^{4}}}

I haven't done this level math in a long time and I am sure that it is not too difficult, but I don't know what it means in the small quantity a/x. Do I just set x>>a in the efield equation and go about my business, if so, I don't understand where the a^2 term comes from in the numerator.

You need to use [noparse] [ tex ] [ /tex ] or [ itex ] [ /itex ] [/noparse] (without the spaces). In other words, your slashes were oriented the wrong way in your closing tags. I fixed them for you. Note that you can also surround your LaTeX code with double dollar signs or double pound signs on either side as shorthand for tex and itex tags respectively.

Taylor series expansion: let's say you have some function f(u) of some independent variable u. The Taylor series expansion of the function around some point "b" is given by $$f(u) = \sum_{n=0}^\infty \frac{1}{n!} \left[ \frac{d^n}{du^n}f(u)\right]_{u=b} (u - b)^n $$ $$ = f(b) +\left. \frac{df}{du}\right|_{u = b} (u - b) + \frac{1}{2}\left. \frac{d^2f}{du^2}\right|_{u=b}(u - b)^2 +~\textrm{H.O.T.}$$ where H.O.T. means "higher order terms." If you think about it, if you truncate the infinite series after n terms, then this amounts to finding a (n-1)th -order polynomial approximation to the function. This approximation is exactly correct at the point u = b, but it begins to diverge away from it as u moves away from b.

In this case, your independent variable is u = a/x, and you're taking the Taylor series expansion around the point b = 0. So it's okay to neglect higher order terms, and still have a pretty accurate approximation, as long as a/x is very close to 0. (u is very close to b). That is the situation you have in this problem.
 
Last edited:
Okay, so my thinking was not too far off. Now I just need to get to work. Thanks for the clarification on both the tex and the problem.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
4K
  • · Replies 10 ·
Replies
10
Views
4K
Replies
27
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K