Techniques for Integrating Radical Functions?

  • Thread starter nickm4
  • Start date
  • #1
nickm4
4
0
What are some techniques for integrating functions that are or contain radicals? I am familiar with trigonometric substitution. Are there any other "common" techniques or special functions that can be used to integrate these functions? or does trigonometric substitution basically take care of everthing? This is a general question, I don't have a specific function in mind.

ty
 

Answers and Replies

  • #2
HallsofIvy
Science Advisor
Homework Helper
43,010
969
Most common is to use trigonometric (or hyperbolic) substitutions.

[itex]sin^2(t)+ cos^2(t)= 1[/itex] so [itex]\sqrt{1- sin^2(t)}= cos(t)[/itex]

For example, to integrate [itex]\int \sqrt{1- x^2}dx[/itex], let x= sin(t). Then dx= cos(t) dt and [itex]\sqrt{1- x^2}= \sqrt{1- sin^2(t)}= cos(t)[/itex] so the integral becomes [itex]\int cos^2(t) dt[/itex] which can be integrated using the identity [itex]cos^2(t)= (1/2)(1+ cos(2t))[/itex].

For something like [itex]\sqrt{1+ x^2}[/itex] you can divide [itex]sin^2(t)+ cos^2(t)= 1[/itex] by cos(t) to get [itex]tan^2(t)+ 1= sec^2(t)][/itex]

To integrate [itex]\int \sqrt{9+ x^2}dx[/itex], let x= 3tan(t). Then [itex]dx= 3 sec^2(t) dt[/itex] and [itex]\sqrt{9+ x^2}= \sqrt{9+ 9tan^2(t)}= 3\sqrt{1+ tan^2(t)}= 3sec(t)[/itex] so the integral becomes [itex]\int (3 sec(t))(3sec^2(t)dt)= 9\int sec^3(t)dt[/itex]. That can be integrated by writing it as [itex]9\int dt/cos^3(t)= 9\int cos(t)dt/cos^4(t)= 9\int cos(t)dt/(1- sin^2(t))^2[/itex] and using the substitution u= sin(t).

But it is also true that [itex]cosh^2(t)- sinh^2(t)= 1[/itex] or [itex]sinh^2(t)+ 1= cosh^2(t)[/itex] so you could also use the substitution x= 3 sinh(x). Then dx= 3 cosh(x)dx and [itex]\int \sqrt{9+ x^2}dx= 9\int cosh^2(x) dx[/itex]

Just about any calculus text will devote at least a section, if not a chapter, to trig substitutions though hyperbolic substitution are less commonly covered.
 

Suggested for: Techniques for Integrating Radical Functions?

  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
21
Views
3K
  • Sticky
  • Last Post
2
Replies
61
Views
85K
Replies
5
Views
3K
  • Last Post
Replies
0
Views
1K
  • Last Post
2
Replies
62
Views
19K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
15
Views
6K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
7
Views
3K
Top