Tension and speed of bowling ball pendulum passing the equilibrium position

snormanlol

Homework Statement
A bowlingball with mass m is hanging on a roof with a wire of length L. The ball is pushed out of equilibrium so that the ball makes an angle θ with the vertical. After letting go it makes a pendulum move. a) Determine the speed of the bowlingball when reaching the equilibrium position. b)Determine the tension of the wire in fuction of L,M and θ.
Homework Equations
mgh=1/2*m*v^2
F=m*a
For part a I used conservation of energy.
-m*g*cos(θ)*L+1/2*m*0^2=-m*g*L +1/2*m*v^2 => v = sqrt(2*g*L(1-cos(θ )).
b) For b I was think that T = mg in the equilibrium point but that doesn't invole θ in the answer. So that's why I tought that T*cos(θ ) = mg. So that the tension is mg/cos(θ). But this isn't correct. The answer has to be T = mg*(3-2*cos(theta)).
Thanks for the help in advance. And I apologize for my bad english it isn't my native language.
And here is a homemade sketch of the problem.

Attachments

• 23.1 KB Views: 13
Related Introductory Physics Homework Help News on Phys.org

BvU

Homework Helper
Hello snorman,
think that T = mg in the equilibrium point
That would be correct if the ball were not moving. But it is, and the kind of trajectory it describes should help you think of what else $T$ has to do except keeping the ball from accelerating downwards • snormanlol

snormanlol

Hi bVU,
Thanks for the tip. arad= v^2/L. So that a = 2*g*(1-cos(theta)).
T - mg = 2*m*g*(1-cos(theta)) => T =mg(3-2*cos(theta))

• BvU

"Tension and speed of bowling ball pendulum passing the equilibrium position"

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving