Tension in a pulley system pulled at an angle

AI Thread Summary
In a pulley system where the angle is 90 degrees, the tension is not simply 2T, as the configuration alters the distribution of forces. The tension would be less than 2T due to the asymmetry introduced by the angle. Making the pulley fixed can change the dynamics, potentially affecting how forces are transmitted through the system. The sideways force from the right rope could indeed exert a lateral pull on the mass. Creating a free body diagram would help visualize these forces and their interactions within the system.
erensatik
Messages
9
Reaction score
3
Homework Statement
The system is in equilibrium. What is the tension in the bottom rope in the setup below? Neglect the mass of the rope and the pulley.
Relevant Equations
F=ma
This problem just came to my mind when thinking on another problem. Does the tension is just 2T as it is if the angle "a" is 90 degrees? It seems not to me. In a "normal"( I don't really know what is the right word for that) situation, the tension is would be 2T at the line in the middle of two strings and would be symmetric. So it should be less than that I guess. That's all I can think of and I am not sure. Please help me out.
One last thing I need to ask is that does making the pulley fixed makes a difference? I have no idea what would be the difference.
 

Attachments

  • Untitled.png
    Untitled.png
    3.2 KB · Views: 244
Last edited:
Physics news on Phys.org
I don't think you should be showing the vertical rope as straight vertical. Do you think that the sideways force from the right rope might pull the mass to the right a bit?
 
Do you know how to create a free body diagram of that loaded pulley?
 
Lnewqban said:
Do you know how to create a free body diagram of that loaded pulley?
totally got it, saying that is enough. Thanks for the help
 
  • Like
Likes Lnewqban and berkeman
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
12
Views
1K
Replies
27
Views
2K
Replies
18
Views
4K
Replies
10
Views
5K
Replies
22
Views
6K
Replies
15
Views
2K
Replies
15
Views
5K
Replies
2
Views
663
Replies
2
Views
2K
Back
Top