Tensor Calculus (Einstein notation)

Click For Summary

Discussion Overview

The discussion revolves around understanding Einstein notation in the context of tensor calculus, specifically addressing the expression ∂uFv - ∂vFu and why it is not necessarily zero. Participants explore the implications of summation and contraction of indices within this notation.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant expresses confusion about why the expression ∂uFv - ∂vFu is not zero, questioning the implications of indices running through the same values.
  • Another participant clarifies that Einstein notation does not imply summation for different terms, explaining that Gμν = ∂μFν - ∂νFμ does not automatically lead to zero for all components.
  • The same participant provides specific examples of the components of Gμν, showing that some are zero while others are not, depending on the indices involved.
  • A later reply acknowledges understanding of the explanation and indicates a desire to provide additional examples.
  • One participant summarizes the notation's omission of the summation symbol and universal quantifier, emphasizing that the expression represents multiple equations for different index combinations.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the initial confusion regarding the expression. While one participant clarifies the notation, the discussion reflects ongoing uncertainty about the implications of Einstein notation and index summation.

Contextual Notes

The discussion highlights the complexity of tensor notation and the subtleties involved in understanding summation and contraction, with no resolution on the initial confusion presented.

paperplane
Messages
3
Reaction score
0
TL;DR
How to sum over indices when they aren't being contracted?
Hello,

I realize this might sound dumb, but I'm having such a hard time understanding Einstein notation. For something like ∂uFv - ∂vFu, why is this not necessarily 0 for tensor Fu? Since all these indices are running through the same values 0,1,2,3?
 
Physics news on Phys.org
Einstein notation for summation is meant to be done for the same term, here you have two terms. There is no implicit summation in ##\partial_\mu F_\nu - \partial_\nu F_\mu##.

Let's call it ##G_{\mu \nu}## i.e. ##G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu##. We have
## G_{00} = \partial_0 F_0 - \partial_0 F_0 = 0##
## G_{10} = \partial_1 F_0 - \partial_0 F_1 = - G_{01}##
## G_{11} = \partial_1 F_1 - \partial_1 F_1 = 0 = G_{22} = G_{33}##
## G_{23} = \partial_2 F_3 - \partial_3 F_2 = - G_{32}##
and so on.

Now, lets assume I contract ##G_{\mu \nu}## with ##\phi^\mu##, we have due to Einstein summation convention
##\phi^\mu G_{\mu \nu} = \phi^0G_{0 \nu} + \phi^1G_{1\nu} + \phi^2G_{2 \nu} + \phi^3G_{3 \nu}##

Let's define ##\psi_\nu = \phi^\mu G_{\mu \nu}##.
We have
##\psi_0 = \phi^\mu G_{\mu 0} = \phi^0G_{0 0} + \phi^1G_{10} + \phi^2G_{20} + \phi^3G_{30} =\phi^1G_{10} + \phi^2G_{20} + \phi^3G_{30} ##
##\psi_1 = \phi^\mu G_{\mu 1} = \phi^0G_{0 1} + \phi^1G_{11} + \phi^2G_{21} + \phi^3G_{31} =\phi^0G_{0 1} + \phi^2G_{21} + \phi^3G_{31}##
and so on
 
  • Like
Likes   Reactions: nasu, topsquark and PeroK
Ah I understand now, thank you!
 
paperplane said:
Ah I understand now, thank you!
I updated my reply above with some more examples.
 
  • Like
Likes   Reactions: topsquark and paperplane
paperplane said:
TL;DR Summary: How to sum over indices when they aren't being contracted?

Hello,

I realize this might sound dumb, but I'm having such a hard time understanding Einstein notation. For something like ∂uFv - ∂vFu, why is this not necessarily 0 for tensor Fu? Since all these indices are running through the same values 0,1,2,3?
Einstein notation omits two standard elements of mathematical notation: the summation symbol (##\sum##) and the universal quantifier (##\forall##). In the above examples we have:
$$G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu$$In full notation this would be:
$$\forall \mu, \nu: G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu$$Note that this is actually ##16## equations! (One for every combination of ##\mu = 0, 1,2,3## and ##\nu = 0, 1,2,3##.) And:
$$\psi_\nu = \phi^\mu G_{\mu \nu}$$In full notation this would be:
$$\forall \nu: \psi_\nu = \sum_{\mu = 0}^{3} \phi^\mu G_{\mu \nu}$$And that is four equations.
 
  • Like
Likes   Reactions: malawi_glenn and Ibix

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K