I Tensor Calculus (Einstein notation)

Click For Summary
Einstein notation can be confusing, particularly regarding the expression ∂uFv - ∂vFu, which is not necessarily zero for tensor Fu despite the indices running through the same values. The notation implies that Gμν = ∂μFν - ∂νFμ represents multiple equations, specifically 16 combinations for the indices μ and ν. The contraction of Gμν with φμ leads to the definition of ψν, which involves summing over the indices, clarifying the relationship between these terms. Understanding that Einstein notation omits explicit summation symbols helps in grasping the underlying mathematics. The discussion ultimately highlights the importance of recognizing how indices interact in tensor calculus.
paperplane
Messages
3
Reaction score
0
TL;DR
How to sum over indices when they aren't being contracted?
Hello,

I realize this might sound dumb, but I'm having such a hard time understanding Einstein notation. For something like ∂uFv - ∂vFu, why is this not necessarily 0 for tensor Fu? Since all these indices are running through the same values 0,1,2,3?
 
Physics news on Phys.org
Einstein notation for summation is meant to be done for the same term, here you have two terms. There is no implicit summation in ##\partial_\mu F_\nu - \partial_\nu F_\mu##.

Let's call it ##G_{\mu \nu}## i.e. ##G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu##. We have
## G_{00} = \partial_0 F_0 - \partial_0 F_0 = 0##
## G_{10} = \partial_1 F_0 - \partial_0 F_1 = - G_{01}##
## G_{11} = \partial_1 F_1 - \partial_1 F_1 = 0 = G_{22} = G_{33}##
## G_{23} = \partial_2 F_3 - \partial_3 F_2 = - G_{32}##
and so on.

Now, lets assume I contract ##G_{\mu \nu}## with ##\phi^\mu##, we have due to Einstein summation convention
##\phi^\mu G_{\mu \nu} = \phi^0G_{0 \nu} + \phi^1G_{1\nu} + \phi^2G_{2 \nu} + \phi^3G_{3 \nu}##

Let's define ##\psi_\nu = \phi^\mu G_{\mu \nu}##.
We have
##\psi_0 = \phi^\mu G_{\mu 0} = \phi^0G_{0 0} + \phi^1G_{10} + \phi^2G_{20} + \phi^3G_{30} =\phi^1G_{10} + \phi^2G_{20} + \phi^3G_{30} ##
##\psi_1 = \phi^\mu G_{\mu 1} = \phi^0G_{0 1} + \phi^1G_{11} + \phi^2G_{21} + \phi^3G_{31} =\phi^0G_{0 1} + \phi^2G_{21} + \phi^3G_{31}##
and so on
 
  • Like
Likes nasu, topsquark and PeroK
Ah I understand now, thank you!
 
paperplane said:
Ah I understand now, thank you!
I updated my reply above with some more examples.
 
  • Like
Likes topsquark and paperplane
paperplane said:
TL;DR Summary: How to sum over indices when they aren't being contracted?

Hello,

I realize this might sound dumb, but I'm having such a hard time understanding Einstein notation. For something like ∂uFv - ∂vFu, why is this not necessarily 0 for tensor Fu? Since all these indices are running through the same values 0,1,2,3?
Einstein notation omits two standard elements of mathematical notation: the summation symbol (##\sum##) and the universal quantifier (##\forall##). In the above examples we have:
$$G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu$$In full notation this would be:
$$\forall \mu, \nu: G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu$$Note that this is actually ##16## equations! (One for every combination of ##\mu = 0, 1,2,3## and ##\nu = 0, 1,2,3##.) And:
$$\psi_\nu = \phi^\mu G_{\mu \nu}$$In full notation this would be:
$$\forall \nu: \psi_\nu = \sum_{\mu = 0}^{3} \phi^\mu G_{\mu \nu}$$And that is four equations.
 
  • Like
Likes malawi_glenn and Ibix
Thread 'The rocket equation, one more time'
I already posted a similar thread a while ago, but this time I want to focus exclusively on one single point that is still not clear to me. I just came across this problem again in Modern Classical Mechanics by Helliwell and Sahakian. Their setup is exactly identical to the one that Taylor uses in Classical Mechanics: a rocket has mass m and velocity v at time t. At time ##t+\Delta t## it has (according to the textbooks) velocity ##v + \Delta v## and mass ##m+\Delta m##. Why not ##m -...

Similar threads

  • · Replies 7 ·
Replies
7
Views
494
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K