I Tensor Calculus (Einstein notation)

AI Thread Summary
Einstein notation can be confusing, particularly regarding the expression ∂uFv - ∂vFu, which is not necessarily zero for tensor Fu despite the indices running through the same values. The notation implies that Gμν = ∂μFν - ∂νFμ represents multiple equations, specifically 16 combinations for the indices μ and ν. The contraction of Gμν with φμ leads to the definition of ψν, which involves summing over the indices, clarifying the relationship between these terms. Understanding that Einstein notation omits explicit summation symbols helps in grasping the underlying mathematics. The discussion ultimately highlights the importance of recognizing how indices interact in tensor calculus.
paperplane
Messages
3
Reaction score
0
TL;DR Summary
How to sum over indices when they aren't being contracted?
Hello,

I realize this might sound dumb, but I'm having such a hard time understanding Einstein notation. For something like ∂uFv - ∂vFu, why is this not necessarily 0 for tensor Fu? Since all these indices are running through the same values 0,1,2,3?
 
Physics news on Phys.org
Einstein notation for summation is meant to be done for the same term, here you have two terms. There is no implicit summation in ##\partial_\mu F_\nu - \partial_\nu F_\mu##.

Let's call it ##G_{\mu \nu}## i.e. ##G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu##. We have
## G_{00} = \partial_0 F_0 - \partial_0 F_0 = 0##
## G_{10} = \partial_1 F_0 - \partial_0 F_1 = - G_{01}##
## G_{11} = \partial_1 F_1 - \partial_1 F_1 = 0 = G_{22} = G_{33}##
## G_{23} = \partial_2 F_3 - \partial_3 F_2 = - G_{32}##
and so on.

Now, lets assume I contract ##G_{\mu \nu}## with ##\phi^\mu##, we have due to Einstein summation convention
##\phi^\mu G_{\mu \nu} = \phi^0G_{0 \nu} + \phi^1G_{1\nu} + \phi^2G_{2 \nu} + \phi^3G_{3 \nu}##

Let's define ##\psi_\nu = \phi^\mu G_{\mu \nu}##.
We have
##\psi_0 = \phi^\mu G_{\mu 0} = \phi^0G_{0 0} + \phi^1G_{10} + \phi^2G_{20} + \phi^3G_{30} =\phi^1G_{10} + \phi^2G_{20} + \phi^3G_{30} ##
##\psi_1 = \phi^\mu G_{\mu 1} = \phi^0G_{0 1} + \phi^1G_{11} + \phi^2G_{21} + \phi^3G_{31} =\phi^0G_{0 1} + \phi^2G_{21} + \phi^3G_{31}##
and so on
 
  • Like
Likes nasu, topsquark and PeroK
Ah I understand now, thank you!
 
paperplane said:
Ah I understand now, thank you!
I updated my reply above with some more examples.
 
  • Like
Likes topsquark and paperplane
paperplane said:
TL;DR Summary: How to sum over indices when they aren't being contracted?

Hello,

I realize this might sound dumb, but I'm having such a hard time understanding Einstein notation. For something like ∂uFv - ∂vFu, why is this not necessarily 0 for tensor Fu? Since all these indices are running through the same values 0,1,2,3?
Einstein notation omits two standard elements of mathematical notation: the summation symbol (##\sum##) and the universal quantifier (##\forall##). In the above examples we have:
$$G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu$$In full notation this would be:
$$\forall \mu, \nu: G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu$$Note that this is actually ##16## equations! (One for every combination of ##\mu = 0, 1,2,3## and ##\nu = 0, 1,2,3##.) And:
$$\psi_\nu = \phi^\mu G_{\mu \nu}$$In full notation this would be:
$$\forall \nu: \psi_\nu = \sum_{\mu = 0}^{3} \phi^\mu G_{\mu \nu}$$And that is four equations.
 
  • Like
Likes malawi_glenn and Ibix
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top