Tensor form of linear Hooke's law with E and v

  • Context: Engineering 
  • Thread starter Thread starter miraboreasu
  • Start date Start date
  • Tags Tags
    Tensor notation
Click For Summary

Discussion Overview

The discussion revolves around the tensor form of linear Hooke's law, specifically in terms of Young's modulus (E) and Poisson's ratio (ν). Participants explore the relationships and formulations necessary to express this law using tensor notation, including vector-matrix forms and Lame parameters.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant notes the absence of a tensor form of linear Hooke's law in terms of E and ν, suggesting a need for assistance in deriving this notation from the vector-matrix form.
  • Another participant provides a rewritten form of the stress-strain relationship, expressing σxx in terms of E and ν, and relates it to Lame parameters G and λ.
  • Some participants attempt to clarify the transformation of the vector-matrix form into a tensor product representation, indicating a desire for a more structured notation.
  • There is a reiteration of the relationships between G, E, and ν, with specific equations provided for G and λ, but the clarity of these transformations remains in question for some participants.

Areas of Agreement / Disagreement

Participants express varying levels of understanding regarding the transformation of Hooke's law into tensor form. While some provide equations and approaches, others indicate confusion and seek further clarification, suggesting that the discussion remains unresolved.

Contextual Notes

The discussion highlights potential limitations in the clarity of the tensor product representation and the assumptions underlying the relationships between the parameters involved. There is also an indication that the mathematical steps may not be fully resolved.

miraboreasu
Messages
24
Reaction score
0
Homework Statement
Rewrite the linear Hooke's law with E and v
Relevant Equations
Linear Hooke's law
Actually, this is not homework, but I think I need help like homework. It was raised from the notice that there is no tensor form of linear Hooke's law in terms of Young's modulus E, and Poission's ratio, v. For example, if we use lame parameters, we have G, \lambda, like
1689866396660.png


The linear Hooke's law (vector-matrix form) is
1689866818129.png

(https://physics.stackexchange.com/q...-materials-makes-stress-undefined-in-hookes-l)

I tried to just use the relationship like:
E=
1689866498147.png


v =
1689866510947.png


but, it ends up with an equation with 2 roots (the first eq for get G= f (E)), so I think I need help about write the notation form directly from the vector-matrix form of the linear Hooke's law
 
Last edited:
Physics news on Phys.org
Start with $$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-\nu)\epsilon_{xx}+\nu\epsilon_{yy}+\nu\epsilon_{zz}]$$Rewrite this as :$$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-2\nu)\epsilon_{xx}+\nu(\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})]$$$$=\frac{E}{(1+\nu)}\epsilon _{xx}+\frac{E\nu}{(1+\nu)(1-2\nu)}(\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})$$$$=2G\epsilon_{xx}+\lambda (\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})$$
 
Chestermiller said:
Start with $$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-\nu)\epsilon_{xx}+\nu\epsilon_{yy}+\nu\epsilon_{zz}]$$Rewrite this as :$$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-2\nu)\epsilon_{xx}+\nu(\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})]$$$$=\frac{E}{(1+\nu)}\epsilon _{xx}+\frac{E\nu}{(1+\nu)(1-2\nu)}(\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})$$$$=2G\epsilon_{xx}+\lambda (\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})$$
Thank you, but sorry I didn't get it, how can I rewrite the vector-matrix form into the form like 2.9. I mean use tensor product, I, to represent the following
1689879602534.png
 
miraboreasu said:
Thank you, but sorry I didn't get it, how can I rewrite the vector-matrix form into the form like 2.9. I mean use tensor product, I, to represent the following
View attachment 329468
Look at my equation again. It’s too easy. You have:$$G=\frac{E}{2(1+\nu)}$$and $$\lambda=\frac{E\nu}{(1+\nu)(1-2\nu)}$$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
8K