Petar Mali
- 283
- 0
F_{\mu\nu}=\frac{\partial A_{\nu}}{\partial x^{\mu}}-\frac{\partial A_{\mu}}{\partial x^{\nu}}
F_{\mu\nu}=-F_{\nu\mu}
F_{ii}\equiv 0
F_{11}=F_{22}=F_{33}=F_{44}=0
where
A_{\mu}=(-\vec{A},\frac{1}{c}\varphi)(F_{\mu\nu})=\left(\begin{array}{cccc}<br /> 0& -B_z&B_y& -\frac{1}{c}E_x\\<br /> B_z&0&-B_x& -\frac{1}{c}E_y \\<br /> -B_y&B_x&0&-\frac{1}{c}E_z\\<br /> \frac{1}{c}E_x& \frac{1}{c}E_y & \frac{1}{c}E_z & 0\\<br /> \end{array} \right)F^{\mu\nu}=g^{\mu\rho}g^{\nu\sigma}F_{\rho\sigma}(F^{\mu\nu})=\left(\begin{array}{cccc}<br /> 0& -B_z&B_y& \frac{1}{c}E_x\\<br /> B_z&0&-B_x& \frac{1}{c}E_y \\<br /> -B_y&B_x&0&\frac{1}{c}E_z\\<br /> -\frac{1}{c}E_x& -\frac{1}{c}E_y & -\frac{1}{c}E_z & 0\\<br /> \end{array} \right)
How do I know that rotA_{\mu}=\frac{\partial A_{\nu}}{\partial x^{\mu}}-\frac{\partial A_{\mu}}{\partial x^{\nu}} is electromagnetic field tensor?
F_{\mu\nu}=-F_{\nu\mu}
F_{ii}\equiv 0
F_{11}=F_{22}=F_{33}=F_{44}=0
where
A_{\mu}=(-\vec{A},\frac{1}{c}\varphi)(F_{\mu\nu})=\left(\begin{array}{cccc}<br /> 0& -B_z&B_y& -\frac{1}{c}E_x\\<br /> B_z&0&-B_x& -\frac{1}{c}E_y \\<br /> -B_y&B_x&0&-\frac{1}{c}E_z\\<br /> \frac{1}{c}E_x& \frac{1}{c}E_y & \frac{1}{c}E_z & 0\\<br /> \end{array} \right)F^{\mu\nu}=g^{\mu\rho}g^{\nu\sigma}F_{\rho\sigma}(F^{\mu\nu})=\left(\begin{array}{cccc}<br /> 0& -B_z&B_y& \frac{1}{c}E_x\\<br /> B_z&0&-B_x& \frac{1}{c}E_y \\<br /> -B_y&B_x&0&\frac{1}{c}E_z\\<br /> -\frac{1}{c}E_x& -\frac{1}{c}E_y & -\frac{1}{c}E_z & 0\\<br /> \end{array} \right)
How do I know that rotA_{\mu}=\frac{\partial A_{\nu}}{\partial x^{\mu}}-\frac{\partial A_{\mu}}{\partial x^{\nu}} is electromagnetic field tensor?
…