A Tensor product in Cartesian coordinates

Click For Summary
The discussion centers on the confusion regarding the representation of perturbation terms like V' = αxy as V' = α x ⊗ y in quantum mechanics. It clarifies that while x and y are not matrices in coordinate representation, they can be treated as matrices in other representations, such as momentum representation. In the context of a 2D quantum system, the Hilbert space is constructed by combining independent degrees of freedom from separate Hilbert spaces for x and y. The shorthand notation V' = αxy is explained as a standard practice in defining operators for 2D quantum systems. For further understanding, reference to Cohen-Tannoudji's quantum mechanics text is suggested.
LagrangeEuler
Messages
711
Reaction score
22
I am confused. Why sometimes perturbation ##V'=\alpha xy## we can write as ##V'=\alpha x \otimes y##. I am confused because ##\otimes## is a tensor product and ##x## and ##y## are not matrices in coordinate representation. Can someone explain this?
 
Physics news on Phys.org
To explain this we need more context, i.e., which concrete example are you discussing?
 
LagrangeEuler said:
##x## and ##y## are not matrices in coordinate representation.
But they are matrices in any other representation, e.g. momentum representation. And even in coordinate representation they can be viewed as matrices, but in this representation calculations can be simplified by viewing them as ordinary numbers.
 
vanhees71 said:
To explain this we need more context, i.e., which concrete example are you discussing?
For instance 2d linear harmonic oscillator with this perturbation.
 
I'm confused by your confusion.

A 1d quantum system "lives" in a Hilbert space ##\mathcal{H}_{x}## that is spanned by linear combination of base kets of the form ##\left|x\right\rangle##. You can also have another independent degree of freedom living in a Hilbert space ##\mathcal{H}_{y} ## with base kets of the form ##\left|y\right\rangle ##. Then, you can combine both degrees of freedom into a Hilbert space ##\mathcal{H}_{xy}=\mathcal{H}_{x}\otimes\mathcal{H}_{y}##, that is how the Hilbert space of a 2d quantum system is build. The base kets are of the form ##\left|xy\right\rangle \equiv\left|x\right\rangle \otimes\left|y\right\rangle ##

So ##V'=\alpha xy## is always a shorthand for ##V'=\alpha x \otimes y##, because that's how the operators acting on the Hilbert space of 2d quantum systems are build, by definition.

See Cohen-Tannoudji, quantum mechanics, vol 1, page 160.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
769
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K