Graduate Tensor product in Cartesian coordinates

Click For Summary
The discussion centers on the confusion regarding the representation of perturbation terms like V' = αxy as V' = α x ⊗ y in quantum mechanics. It clarifies that while x and y are not matrices in coordinate representation, they can be treated as matrices in other representations, such as momentum representation. In the context of a 2D quantum system, the Hilbert space is constructed by combining independent degrees of freedom from separate Hilbert spaces for x and y. The shorthand notation V' = αxy is explained as a standard practice in defining operators for 2D quantum systems. For further understanding, reference to Cohen-Tannoudji's quantum mechanics text is suggested.
LagrangeEuler
Messages
711
Reaction score
22
I am confused. Why sometimes perturbation ##V'=\alpha xy## we can write as ##V'=\alpha x \otimes y##. I am confused because ##\otimes## is a tensor product and ##x## and ##y## are not matrices in coordinate representation. Can someone explain this?
 
Physics news on Phys.org
To explain this we need more context, i.e., which concrete example are you discussing?
 
LagrangeEuler said:
##x## and ##y## are not matrices in coordinate representation.
But they are matrices in any other representation, e.g. momentum representation. And even in coordinate representation they can be viewed as matrices, but in this representation calculations can be simplified by viewing them as ordinary numbers.
 
vanhees71 said:
To explain this we need more context, i.e., which concrete example are you discussing?
For instance 2d linear harmonic oscillator with this perturbation.
 
I'm confused by your confusion.

A 1d quantum system "lives" in a Hilbert space ##\mathcal{H}_{x}## that is spanned by linear combination of base kets of the form ##\left|x\right\rangle##. You can also have another independent degree of freedom living in a Hilbert space ##\mathcal{H}_{y} ## with base kets of the form ##\left|y\right\rangle ##. Then, you can combine both degrees of freedom into a Hilbert space ##\mathcal{H}_{xy}=\mathcal{H}_{x}\otimes\mathcal{H}_{y}##, that is how the Hilbert space of a 2d quantum system is build. The base kets are of the form ##\left|xy\right\rangle \equiv\left|x\right\rangle \otimes\left|y\right\rangle ##

So ##V'=\alpha xy## is always a shorthand for ##V'=\alpha x \otimes y##, because that's how the operators acting on the Hilbert space of 2d quantum systems are build, by definition.

See Cohen-Tannoudji, quantum mechanics, vol 1, page 160.
 
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
911
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K