What is Cartesian coordinates: Definition and 90 Discussions

A Cartesian coordinate system (UK: , US: ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length. Each reference line is called a coordinate axis or just axis (plural axes) of the system, and the point where they meet is its origin, at ordered pair (0, 0). The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin.
One can use the same principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes (or, equivalently, by its perpendicular projection onto three mutually perpendicular lines). In general, n Cartesian coordinates (an element of real n-space) specify the point in an n-dimensional Euclidean space for any dimension n. These coordinates are equal, up to sign, to distances from the point to n mutually perpendicular hyperplanes.

The invention of Cartesian coordinates in the 17th century by René Descartes (Latinized name: Cartesius) revolutionized mathematics by providing the first systematic link between Euclidean geometry and algebra. Using the Cartesian coordinate system, geometric shapes (such as curves) can be described by Cartesian equations: algebraic equations involving the coordinates of the points lying on the shape. For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x2 + y2 = 4.
Cartesian coordinates are the foundation of analytic geometry, and provide enlightening geometric interpretations for many other branches of mathematics, such as linear algebra, complex analysis, differential geometry, multivariate calculus, group theory and more. A familiar example is the concept of the graph of a function. Cartesian coordinates are also essential tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering and many more. They are the most common coordinate system used in computer graphics, computer-aided geometric design and other geometry-related data processing.

View More On Wikipedia.org
1. B Invariant under rotation: Banal, obvious, or noteworthy?

Given a cartesian coordinate system with a fixed point of origin and three axes, it is a fact, that the coordinates of a point P change, when the coordinate system is rotated around its point of origin. The distance between the origin and point P is of course unaffected by such a rotation. What...

8. Calculating crossproduct integral, Parametrization

i) I approximate the solenoid as a cylinder with height L and radius R. I am not sure how I am supposed to place the solenoid in the coordinate system but I think it must be like this, right? The surface occupied by the cylinder can be described by all vectors ##\vec x =(x,y,z)## so that...
9. I Locally Cartesian Coordinates on the Sphere

I was trying to construct locally Euclidean metrics. Consider the sphere with the usual coordinate system induced from spherical coordinates in ##\mathbb R^3##. Consider a point ##p## in the Equator having coordinates ##(\theta_0, \phi_0) = (\pi/2, 0)##. If you make the coordinate change ##\xi^1...
10. Convert cylindrical coordinate displacement to Cartesian

Summary: I can't figure out how the solver carries out the conversions from cartesian to cylindrical coordinates and vice-versa. I have a set of points of a finite element mesh which when inputted into a solver (ansys) gives the displacement of each node. I can get the displacement values of...
11. Hollow Sphere Inertia in Cartesian Coordinates

Problem Statement: How do you calculate the rotational inertia of a hollow sphere in cartesian (x,y) coordinates? Relevant Equations: I=Mr^2 My physics teacher said its his goal to figure this out before he dies. He has personally solved all objects inertias in cartesian coordinates but can't...
12. I Derivation of Divergence in Cartesian Coordinates

In section 1-5 of the third edition of Foundations of Electromagnetic Theory by Reitz, Milford and Christy, the authors give a coordinate-system-independent definition of the divergence of a vector field: $$\nabla\cdot\mathbf{F} = \lim_{V\rightarrow 0}\frac{1}{V}\int_S\mathbf{F\cdot n}da$$...
13. I Integration over a part of a spherical shell in Cartesian coordinates

I am modeling some dynamical system and I came across integral that I don't know how to solve. I need to integrate vector function f=-xj+yi (i and j are unit vectors of Cartesian coordinate system). I need to integrate this function over a part of spherical shell of radius R. This part is...
14. I From Geographical coordinates to Cartesian coordinates

I have 2 points expressed in (latitude,longitude) and I want to calculate the angle with respect to the north pole. Since the two points are very near (like hundred of meters), is it possible to consider the two points in the carthesian system simply as: x=longitude y=latitude Then...
15. A Vec norm in polar coordinates differs from norm in Cartesian coordinates

I am really confused about coordinate transformations right now, specifically, from cartesian to polar coordinates. A vector in cartesian coordinates is given by ##x=x^i \partial_i## with ##\partial_x, \partial_y \in T_p \mathcal{M}## of some manifold ##\mathcal{M}## and and ##x^i## being some...

33. Finding Beltrami field in Cartesian coordinates

Homework Statement Working in Cartesian coordinates (x,y,z) and given that the function g is independent of x, find the functions f and g such that: v=coszi+f(x,y,z)j+g(y,z)k is a Beltrami field. Homework Equations From wolfram alpha a Beltrami field is defined as v x (curl v)=0 The Attempt...
34. Cartesian coordinates to Polar coordinates (dx,dy question)

The usual change of variables in this case (mentioned in the title of this topic) is this: ##x = rcos(t)## ##y = rsin(t)## When I rewrite (say my integral) in polar coordinates I have to change ##dxdy## to ##rdrdt## My question is why can't I just compute dx and dy the usual way (the already...
35. Transforming Spherical Angles to Cartesian Coordinates for Beam Dynamics

Hello I have this problem - From a generator, I get a compton scattering with the electrons theta and phi angles. where I having the following equations for a particle px = E_particle * sin (theta) * cos (phi); py = E_particle * sin (theta) * sin (phi); pz = E_particle * cos (theta)...
36. Convert this integral from cartesian coordinates to polar coordinates

Homework Statement The problem and its solution are attached as TheProblemAndTheSolution.jpg. If you don't want to view the attached image, the cartesian-coordinate version that the problem wants me to convert to a polar-coordinate version is the following (let "int" = "integral").: int int (1...
37. Mechanics in cartesian coordinates

Homework Statement A cannon shoots a ball at an angle θ above the horizontal ground. (a) Neglecting air resistance, use Newton's second law to find the ball's position as a function of time. (Use axes with x measured horizontally and y vertically.) (b) Let r(t) denote the ball's distance...
38. Calculating elliptic orbits in Cartesian coordinates

I have a function to plot the orbits of planets based on their orbital elements (Semi-major Axis, Eccentricity, Argument of periapsis, Inclination, and longitude of ascending node). I have the x and y coordinates working great using only the semi-major axis, eccentricity, and argument of...
39. How to translate from polar to cartesian coordinates:

How to translate r = 2 /(2 - cos(theta)) to cartesian coordinates: so far: r = 2 /(2 - cos(theta)) r = 2 /(2 - cos(theta)) |* (2 - cos(theta)) both sides r (2 - cos(theta))= 2 2*r - rcos(theta) = 2 | know x = rcos(theta) 2*r - x...
40. Convert Cartesian coordinates to spherical shape

Hello how can Convert Cartesian coordinates to spherical with shape? for clear my question i explain a way to convert my coordinates in different spherical. for example i use this diagram to convert Cartesian coordinates to Cylindrical(with image to axises) for example: now how can i do...
41. Electrodynamics: Electrostatic field potencial in Cartesian coordinates

Homework Statement It's given that absolute permitivity is a coordinate function: ε (x, y, z) = Asin(x)cos(y), where A=const Homework Equations We need to find an electrostatic field potential function \varphi in Cartesian coordinate system. The Attempt at a Solution I tired to solve, but...
42. Going from cylindrical to cartesian coordinates

Homework Statement Hi The expression for the magnetic field from an infinite wire is \boldsymbol B(r) = \frac{\mu_0I}{2\pi}\frac{1}{r} \hat\phi which points along \phi. I am trying to convert this into cartesian coordinates, and what I get is \boldsymbol B(x, y) =...
43. Converting Polar to Cartesian Coordinates

I was given the problem r=2sin(2(θ)). I'm supposed to write the equation in the Cartesian Coordinates. I understand the basics to this but I'm not really sure how I'm supposed to write the equation when I have x=2sin(2(θ))cos(θ) and y=2sin(2θ)sin(θ).
44. Kinematics Vectors and cartesian coordinates. Plane with wind blowing.

Homework Statement An airplane flies at an air speed of 300 miles per hour, in the direction toward southwest. There is a head wind of 75 mi/hr in the direction toward due east. (A) Determine the ground speed. (B) Determine the direction of motion of the plane, expressed as an angle...
45. Triple Integral Cartesian Coordinates

Ok I have a quick question. I have this problem that is doable with polar coordinates and triple integrals but I was wondering if it would be possible to do this problem in the cartesian coordinate system (odd question I know...). Homework Statement A sprinkler distributes water in a circular...
46. Converting polar to cartesian coordinates

Homework Statement Homework Equations The Attempt at a Solution Do you see that 2 between A and the integral? There's no 2 in the above equation. I don't see where that 2 came from. Everything else is fine.
47. Magnetic Field Equation in Spherical Coordinates to Cartesian Coordinates

Homework Statement The magnetic field around a long, straight wire carrying a steady current I is given in spherical coordinates by the expression \vec{B} = \frac{\mu_{o} I }{2∏ R} \hat{\phi} , where \mu_{o} is a constant and R is the perpendicular distance from the wire to...
48. Triple integral and cartesian coordinates

we all know that triple integral can be solved by either cartesian coordinates , spherical ,or cylindrical coordinates i just need like some advice in knowing when the variable used is constant and when it is not for example : r in cylindrical coordinates can it be constant or not?? because i...
49. Converting Position Vector vs Time to Cartesian Coordinates

1. The position vector of a particle at time t ≥ 0 is given by r = sin(t)*i + cos(2t)*j. Find the cartesian equation for the path of the particle. 2. I was told that the answer is: y = 1 - 2x^2 But I don't know how to obtain that solution. 3. r = sin(t)*i + cos(2t)*j At first I...
50. Expressing a surface in cartesian coordinates from spherical

Homework Statement The following equation describes a surface in spherical coordinates. θ =pi/4 Write the equation in the cartesian coordinates? that is, (r,θ,Ø) to (x,y,z) Homework Equations x=rsinθcosØ y=rsinθsinØ z=rcosθ r=sqrt(x^2+y^2+z^2) θ=cos^-1(z/r) Ø=tan^-1(y/x) The...