The angular momentum operator acting on a wave function

Jerrynap
Messages
8
Reaction score
0
Hi guys, I need help on interpreting this solution.

Let me have two wave functions:
\phi_1 = N_1(r) (x+iy)
\phi_2 = N_2(r) (x-iy)

If the angular momentum acts on both of them, the result will be:

L_z \phi_1 = \hbar \phi_1
L_z \phi_2 = -\hbar \phi_2

My concern is, \phi_1 and \phi_2 look really like the complex conjugate of each other, so why do they have different eigenvalue?
 
Physics news on Phys.org
Jerrynap said:
My concern is, \phi_1 and \phi_2 look really like the complex conjugate of each other, so why do they have different eigenvalue?
Why should they have the same eigenvalue? Have a look at the complex conjugated eigenvalue equation (A|λ>)* = (λ|λ>)* <=> A*|λ>*=λ|λ>*.
 
kith said:
Why should they have the same eigenvalue? Have a look at the complex conjugated eigenvalue equation (A|λ>)* = (λ|λ>)* <=> A*|λ>*=λ|λ>*.

Well, A* = A (hermitian) and λ is real. So wouldn't it be

<br /> \hat{A}^*\left| λ\right\rangle^* = \hat{A}\left| λ\right\rangle^* = λ\left| λ\right\rangle^* ?<br />
 
Jerrynap said:
Well, A* = A (hermitian)
Hermitian refers to the adjoint operator A+ and not to the complex conjugate A*. If you look at Lz in spherical coordinates, you see that it isn't invariant under complex conjugation because it contains an "i".
 
Oh... I see where the negative sign came about. Lz* = -Lz. This can be seen in Cartesian coordinates as well since p* = -p. Thanks kith
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top