The Barnes' G-Function, and related higher functions

  • Context: MHB 
  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Functions
Click For Summary
SUMMARY

The discussion focuses on the properties and applications of the Barnes G-function, a second-order extension of the factorial function, closely related to the Double Gamma function. Key equations, such as the canonical product forms for the Gamma function and the definition of the Multiple Gamma Function, are derived and explored. The conversation also highlights the derivation of reflection formulas and integral representations involving the Barnes G-function, Clausen function, and other higher functions. The tutorial aims to provide a self-contained exploration of these mathematical concepts.

PREREQUISITES
  • Understanding of the Gamma function and its properties
  • Familiarity with the concept of reflection formulas in complex analysis
  • Knowledge of integral calculus, particularly integration by parts
  • Basic understanding of special functions, including the Polylogarithm and Clausen function
NEXT STEPS
  • Study the properties of the Double Gamma function and its applications
  • Explore the derivation and applications of the Clausen function
  • Learn about the integral representations of special functions
  • Investigate the implications of log-convexity in the context of the Gamma function
USEFUL FOR

Mathematicians, researchers in functional analysis, and students studying advanced calculus or special functions will benefit from this discussion.

  • #31
Next, we consider the Barnes function at $$z=1/4$$ and $$z=3/4$$. Setting $$z=1/4$$ in the trig series gives:$$\mathscr{S}_{\infty}\left(\tfrac{1}{4}\right) = \sum_{k=1}^{\infty}\frac{\log k}{k^2}\cos\left(\frac{\pi k}{2}\right) \equiv $$In the previous 3-case, we split this into 3 sums, but in this 4-case, the first and third sums vanish, due to the factors \cos(\pi/2) and \cos(3\pi/2) respectively. Consequently, we have$$\mathscr{S}_{\infty}\left(\tfrac{1}{4}\right) = \cos \pi \, \sum_{k=0}^{\infty}\frac{\log(4k+2)}{(4k+2)^2} + \cos 2\pi \, \sum_{k=0}^{\infty}\frac{\log(4k+4)}{(4k+4)^2} = $$$$- \sum_{k=0}^{\infty} \Bigg\{ \frac{\log 2}{(2k+1)^2} + \frac{\log(2k+1)}{(2k+1)^2} \Bigg\} + \sum_{k=0}^{\infty} \Bigg\{ \frac{2\log 2 }{(k+1)^2} + \frac{\log(k+1)}{(k+1)^2} \Bigg\} = $$$$- \chi(2)\, \log 2 + \chi ' (2) + 2\, \zeta(2)\, \log 2 - \zeta ' (2)$$Where $$\chi(x)$$ is the Legendre Chi function:
$$\chi(x) = \sum_{k=0}^{\infty}\frac{1}{(2k+1)^x}$$
By comparison with the series definition of the Riemann Zeta function, a simple calculation shows the following equivalence:$$\chi(x) = \zeta (x) - \frac{1}{2^x} \zeta(x) = (1-2^{-x}) \zeta(x)$$Differentiating both sides gives:$$\chi ' (x) = 2^{-x} \zeta (x)\, \log 2 + (1-2^{-x}) \zeta ' (x)$$Setting $$x=2$$ gives:$$\chi(2) = \frac{3}{4}\zeta(2) = \frac{\pi^2}{8}$$$$\chi ' (2) = \frac{\zeta(2)}{4}\log 2 + \frac{3}{4}\zeta ' (2) = \frac{\pi^2}{24}\log 2+ \frac{3}{4}\zeta ' (2)$$
Substituting these values back into$$- \chi(2)\, \log 2 + \chi ' (2) + 2\, \zeta(2)\, \log 2 - \zeta ' (2)$$gives$$\mathscr{S}_{\infty}\left(\tfrac{1}{4}\right) = \frac{\pi^2}{4}\log 2 - \frac{\zeta ' (2)}{4} $$
Setting $$z=1/4$$ in The Master Formula then gives:
$$\frac{3}{32} (1-\gamma - \log 2\pi) +\frac{\zeta ' (2)}{2\pi^2}
- \frac{ \text{Cl}_2(\pi/2) }{4\pi}
-\frac{3}{4} \log \Gamma \left( \tfrac{1}{4} \right) -\frac{1}{2\pi^2} \left[ \frac{\pi^2}{4}\log 2 - \frac{\zeta ' (2)}{4} \right]=$$$$\frac{3}{32} (1-\gamma - \log \pi) - \frac{7}{32}\log 2 +\frac{5 \, \zeta ' (2)}{8\pi^2}
- \frac{ G }{4\pi}
-\frac{3}{4} \log \Gamma \left( \tfrac{1}{4} \right)$$Employing the reflection formula gives the case where $$z=3/4$$.

-------------------------

Barnes' function at z=1/4 and z=3/4:
$$\log G\left( \tfrac{1}{4} \right) = \frac{3}{32} (1-\gamma - \log \pi) - \frac{7}{32}\log 2 +\frac{5 \, \zeta ' (2)}{8\pi^2}
- \frac{ G }{4\pi}
-\frac{3}{4} \log \Gamma \left( \tfrac{1}{4} \right)$$
$$\log G\left( \tfrac{3}{4} \right) = \frac{3}{32} (1-\gamma) - \frac{11}{32}\log 2\pi +\frac{5 \, \zeta ' (2)}{8\pi^2}
+ \frac{ G }{4\pi}
+\frac{1}{4} \log \Gamma \left( \tfrac{1}{4} \right)$$
$$G\left( \tfrac{1}{4} \right) = \frac{e^{3(1-\gamma)/32}}{2^{7/32}\, \pi^{3/32}\, \Gamma \left( \tfrac{1}{4} \right)^{3/4} }\, \, \text{exp} \left( \frac{5 \, \zeta ' (2)}{8\pi^2}
- \frac{ G }{4\pi} \right) $$
$$G\left( \tfrac{3}{4} \right) = \frac{e^{3(1-\gamma)/32\, } \Gamma \left( \tfrac{1}{4} \right)^{1/4} }{ (2\pi)^{11/32} }\, \, \text{exp} \left( \frac{5 \, \zeta ' (2)}{8\pi^2}
+ \frac{ G }{4\pi} \right)$$
 
Physics news on Phys.org
  • #32
Right then...! Now that we've got the 'easy' [sarcasm] cases out of the way, it's time to get a little more - erm - stressed...? lolWith the 5-case, the first thing that causes difficulty - well, actually, just more gruntwork - is that to get all four arguments, z=1/5, 2/5, 3/5, and 4/5, we need two evaluations of our trig seris, and then two applications of the reflection formula. That being the case, I'll first deal with the pair z=1/5 and z=4/5.Setting z=1/5 in our series, we now need to evaluate the sum:$$\mathscr{S}_{\infty}\left(\tfrac{1}{5}\right) = \sum_{k=1}^{\infty}\frac{\log k}{k^2}\cos\left(\frac{2\pi k}{5}\right) \equiv $$As before, we split this sum into exactly the same number of sums as the denominator of our argument (5 partial sums in this case):$$\mathscr{S}_{\infty}\left(\tfrac{1}{5}\right) \equiv $$$$\cos\left(\frac{2\pi}{5}\right)\, \sum_{k=0}^{\infty}\frac{\log(5k+1)}{(5k+1)^2}+
\cos\left(\frac{4\pi}{5}\right)\, \sum_{k=0}^{\infty}\frac{\log(5k+2)}{(5k+2)^2}+$$$$\cos\left(\frac{6\pi}{5}\right)\, \sum_{k=0}^{\infty}\frac{\log(5k+3)}{(5k+3)^2}+
\cos\left(\frac{8\pi}{5}\right)\, \sum_{k=0}^{\infty}\frac{\log(5k+4)}{(5k+4)^2}+$$$$\cos\left(2\pi \right)\, \sum_{k=0}^{\infty}\frac{\log(5k+5)}{(5k+5)^2} $$Using a little basic trigonometry - $$\cos(2\pi-\theta) = \cos \theta$$ - and a few special values of the Cosine (see here: Cosine: Specific values (subsection 03/02)), we can re-write this as:$$\cos\left( \frac{2\pi}{5} \right)\, \sum_{k=0}^{\infty} \Bigg\{ \frac{\log(5k+1)}{(5k+1)^2}+ \frac{\log(5k+4)}{(5k+4)^2} \Bigg\} +$$$$\cos\left( \frac{4\pi}{5} \right)\, \sum_{k=0}^{\infty} \Bigg\{ \frac{\log(5k+2)}{(5k+2)^2}+ \frac{\log(5k+3)}{(5k+3)^2} \Bigg\} +$$$$\frac{1}{5^2} \sum_{k=0}^{\infty} \Bigg\{ \frac{\log 5 }{(k+1)^2 } + \frac{\log (k+1) }{(k+1)^2 } \Bigg\} = $$

$$\frac{ \cos\left( \frac{2\pi}{5} \right)}{5^2} \, \sum_{k=0}^{\infty} \Bigg\{ \frac{\log 5}{(k+1/5)^2} + \frac{\log 5}{(k+4/5)^2}+ \frac{\log(k+1/5)}{(k+1/5)^2} + \frac{\log(k+4/5)}{(k+4/5)^2} \Bigg\} +$$$$\frac{ \cos\left( \frac{4\pi}{5} \right)}{5^2} \, \sum_{k=0}^{\infty} \Bigg\{ \frac{\log 5}{(k+2/5)^2} + \frac{\log 5}{(k+3/5)^2}+ \frac{\log(k+2/5)}{(k+2/5)^2} + \frac{\log(k+3/5)}{(k+3/5)^2} \Bigg\} +$$$$\frac{1}{5^2} \sum_{k=0}^{\infty} \Bigg\{ \frac{\log 5 }{(k+1)^2 } + \frac{\log (k+1) }{(k+1)^2 } \Bigg\} = $$

$$\frac{ (\sqrt{5}-1)}{100} \, \sum_{k=0}^{\infty} \Bigg\{ \frac{\log 5}{(k+1/5)^2} + \frac{\log 5}{(k+4/5)^2}+ \frac{\log(k+1/5)}{(k+1/5)^2} + \frac{\log(k+4/5)}{(k+4/5)^2} \Bigg\} +$$$$-\frac{ (\sqrt{5}+1) }{100} \, \sum_{k=0}^{\infty} \Bigg\{ \frac{\log 5}{(k+2/5)^2} + \frac{\log 5}{(k+3/5)^2}+ \frac{\log(k+2/5)}{(k+2/5)^2} + \frac{\log(k+3/5)}{(k+3/5)^2} \Bigg\} +$$$$\frac{\zeta(2)}{25}\, \log 5 - \frac{\zeta ' (2)}{25} $$
Next, we use the following series definitions of the Trigamma function and Hurwitz Zeta function:$$\psi_1(z) = \sum_{k=0}^{\infty}\frac{1}{(k+z)^2}$$$$\zeta(s,a) = \sum_{k=0}^{\infty}\frac{1}{(k+a)^s}$$Differentiating the Hurwitz Zeta function with respect to it's first argument gives:$$\sum_{k=0}^{\infty}\frac{\log(k+s)}{(k+a)^s} = -\zeta ' (s,a)$$We will also use the reflection formula for the Trigamma function:$$\psi_1(z)+\psi_1(1-z) = \pi^2 \csc^2 \pi z$$Putting all of this together, we get
$$\frac{ (\sqrt{5}-1)}{100} \, \Bigg\{ \psi_1\left( \tfrac{1}{5} \right)\, \log 5 + \psi_1\left( \tfrac{4}{5} \right)\, \log 5 - \zeta ' \left(2, \tfrac{1}{5} \right) - \zeta ' \left(2, \tfrac{4}{5} \right) \Bigg\} +$$$$-\frac{ (\sqrt{5}+1) }{100} \, \Bigg\{ \psi_1\left( \tfrac{2}{5} \right)\, \log 5 + \psi_1\left( \tfrac{3}{5} \right)\, \log 5 - \zeta ' \left(2, \tfrac{2}{5} \right) - \zeta ' \left(2, \tfrac{3}{5} \right) \Bigg\} +$$$$\frac{\pi^2}{150}\, \log 5 - \frac{\zeta ' (2)}{25} $$
The first pair of Trigammas can be evaluated via the reflection formula, as can the second:$$\psi_1\left( \tfrac{1}{5} \right)
+ \psi_1\left( \tfrac{4}{5} \right) = \pi^2\csc^2 (\pi/5) = \frac{16\pi^2}{(\sqrt{5}+1)^2} $$$$\psi_1\left( \tfrac{2}{5} \right)
+ \psi_1\left( \tfrac{3}{5} \right) = \pi^2\csc^2 (2\pi/5) = \frac{16\pi^2}{(\sqrt{5}-1)^2}$$$$\Rightarrow$$$$\frac{\pi^2}{25}\, \left( \frac{1}{6} +\frac{16}{(\sqrt{5}+1)^3} - \frac{16}{(\sqrt{5}-1)^3} \right)\, \log 5 - \frac{\zeta ' (2)}{25} + $$

$$\frac{ (\sqrt{5}+1) }{100} \, \Bigg\{ \zeta ' \left(2, \tfrac{2}{5} \right) - \zeta ' \left(2, \tfrac{3}{5} \right) \Bigg\} -
\frac{ (\sqrt{5}-1) }{100} \, \Bigg\{ \zeta ' \left(2, \tfrac{1}{5} \right) + \zeta ' \left(2, \tfrac{4}{5} \right) \Bigg\}
$$
Finally, setting $$z=1/5$$ in The Master Formula gives:$$\frac{2}{25}(1-\gamma-\log 2\pi) - \frac{1}{50}\, \left( \frac{1}{6} +\frac{16}{(\sqrt{5}+1)^3} - \frac{16}{(\sqrt{5}-1)^3} \right)\, \log 5 + $$$$\frac{13\, \zeta ' (2)}{25\pi^2} - \frac{ \text{Cl}_2(2\pi /5) }{4\pi} -\frac{4}{5} \log G\left( \tfrac{1}{5} \right) + $$$$\frac{ (\sqrt{5}-1) }{200 \pi^2 } \, \Bigg\{ \zeta ' \left(2, \tfrac{1}{5} \right) + \zeta ' \left(2, \tfrac{4}{5} \right) \Bigg\} - \frac{ (\sqrt{5}+1) }{200\, \pi^2} \, \Bigg\{ \zeta ' \left(2, \tfrac{2}{5} \right) - \zeta ' \left(2, \tfrac{3}{5} \right) \Bigg\}
$$
Clearly, due to the complexity of the expression above, writing this particular argument of the Barnes' function - and that of z=4/5 - in exponential form is impractical, so only the logarithmic forms are given below.
-------------------------

Barnes' function at z=1/5 and z=4/5:
$$\log G\left(\tfrac{1}{5}\right) = $$$$\frac{2}{25}(1-\gamma-\log 2\pi) - \frac{1}{50}\, \left( \frac{1}{6} +\frac{16}{(\sqrt{5}+1)^3} - \frac{16}{(\sqrt{5}-1)^3} \right)\, \log 5 + $$$$\frac{13\, \zeta ' (2)}{25\pi^2} - \frac{ \text{Cl}_2(2\pi /5) }{4\pi} -\frac{4}{5} \log G\left( \tfrac{1}{5} \right) + $$$$\frac{ (\sqrt{5}-1) }{200 \pi^2 } \, \Bigg\{ \zeta ' \left(2, \tfrac{1}{5} \right) + \zeta ' \left(2, \tfrac{4}{5} \right) \Bigg\} - \frac{ (\sqrt{5}+1) }{200\, \pi^2} \, \Bigg\{ \zeta ' \left(2, \tfrac{2}{5} \right) - \zeta ' \left(2, \tfrac{3}{5} \right) \Bigg\}
$$$$\log G\left(\tfrac{4}{5}\right) = $$$$\frac{2}{25}(1-\gamma) +\frac{11}{50}\log 2 +\frac{3}{25} \log \pi - \frac{1}{50}\, \left( \frac{1}{6} +\frac{16}{(\sqrt{5}+1)^3} - \frac{16}{(\sqrt{5}-1)^3} \right)\, \log 5 + $$$$\frac{13\, \zeta ' (2)}{25\pi^2} + \frac{ \text{Cl}_2(2\pi /5) }{4\pi} - \frac{1}{10}\log(5-\sqrt{5} ) +\frac{1}{5} \log G\left( \tfrac{1}{5} \right) + $$$$\frac{ (\sqrt{5}-1) }{200 \pi^2 } \, \Bigg\{ \zeta ' \left(2, \tfrac{1}{5} \right) + \zeta ' \left(2, \tfrac{4}{5} \right) \Bigg\} - \frac{ (\sqrt{5}+1) }{200\, \pi^2} \, \Bigg\{ \zeta ' \left(2, \tfrac{2}{5} \right) - \zeta ' \left(2, \tfrac{3}{5} \right) \Bigg\}
$$
 
  • #33
I'll skip the two remaining arguments for the 5-case and move on to the 6-case:$$\mathscr{S}_{\infty}\left(\tfrac{1}{6}\right) = \sum_{k=1}^{\infty} \frac{\log
k}{k^2}\cos\left(\frac{\pi}{3}\right) \equiv$$
$$\cos\left( \frac{\pi}{3} \right) \, \sum_{k=0}^{\infty} \frac{\log (6k+1)}{(6k+1)^2} +
\cos\left( \frac{2\pi}{3} \right) \, \sum_{k=0}^{\infty} \frac{\log (6k+2)}{(6k+2)^2}$$$$\cos\left( \pi \right) \, \sum_{k=0}^{\infty} \frac{\log (6k+3)}{(6k+3)^2} +
\cos\left( \frac{4\pi}{3} \right) \, \sum_{k=0}^{\infty} \frac{\log (6k+4)}{(6k+4)^2}$$$$\cos\left( \frac{5\pi}{3} \right) \, \sum_{k=0}^{\infty} \frac{\log (6k+5)}{(6k+5)^2} +
\cos\left( 2\pi \right) \, \sum_{k=0}^{\infty} \frac{\log (6k+6)}{(6k+6)^2} = $$
$$\frac{1}{2} \, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log (6k+1)}{(6k+1)^2} -
\frac{\log (6k+2)}{(6k+2)^2} -
\frac{\log (6k+4)}{(6k+4)^2} +
\frac{\log (6k+5)}{(6k+5)^2}
\Bigg\} +$$$$+\frac{1}{9} \, \sum_{k=0}^{\infty} \Bigg\{
- \frac{\log 3}{(2k+1)^2} - \frac{\log (2k+1)}{(2k+1)^2}
+ \frac{\log 3}{(2k+2)^2} + \frac{\log (2k+2)}{(2k+2)^2}
\Bigg\}=
$$
$$\frac{\log 6}{72} \, \Bigg\{
\psi_1\left( \tfrac{1}{6} \right) + \psi_1\left( \tfrac{5}{6} \right)
- \psi_1\left( \tfrac{1}{3} \right) - \psi_1\left( \tfrac{2}{3} \right)
\Bigg\} +$$$$\frac{1}{72}\, \Bigg\{
\zeta ' \left(2, \tfrac{1}{3} \right) + \zeta ' \left(2, \tfrac{2}{3} \right) -
\zeta ' \left(2, \tfrac{1}{6} \right) - \zeta ' \left(2, \tfrac{5}{6} \right)
\Bigg\} +$$$$\frac{1}{9}\, \Bigg[
\eta ' (2) - \eta(2)\, \log 3
\Bigg] $$
By the reflection formula for the Trigamma function,$$\psi_1\left( \tfrac{1}{6} \right) + \psi_1\left( \tfrac{5}{6} \right)
- \psi_1\left( \tfrac{1}{3} \right) - \psi_1\left( \tfrac{2}{3} \right) =$$$$\pi^2 \left( \csc^2(\pi/6) - \csc^2(\pi/3) \right)= \frac{8 \pi^2}{3} $$$$\Rightarrow$$
$$\frac{\pi^2}{27}\log 6 + \frac{1}{9}\, \Bigg[ \frac{\pi^2}{12}\log 2 + \frac{\zeta ' (2)}{2} -\frac{\pi^2}{12}\log 3 \Bigg] +$$$$\frac{1}{72}\, \Bigg\{
\zeta ' \left(2, \tfrac{1}{3} \right) + \zeta ' \left(2, \tfrac{2}{3} \right) -
\zeta ' \left(2, \tfrac{1}{6} \right) - \zeta ' \left(2, \tfrac{5}{6} \right)
\Bigg\} =$$
$$\frac{\pi^2}{9}\log 2 + \frac{5\pi^2}{108}\log 3+ \frac{\zeta ' (2)}{18} +$$$$\frac{1}{72}\, \Bigg\{
\zeta ' \left(2, \tfrac{1}{3} \right) + \zeta ' \left(2, \tfrac{2}{3} \right) -
\zeta ' \left(2, \tfrac{1}{6} \right) - \zeta ' \left(2, \tfrac{5}{6} \right)
\Bigg\} $$For the sake of brevity, I'll use the shorthand notation$$\kappa_1 (6) =
\zeta ' \left(2, \tfrac{1}{3} \right) + \zeta ' \left(2, \tfrac{2}{3} \right) -
\zeta ' \left(2, \tfrac{1}{6} \right) - \zeta ' \left(2, \tfrac{5}{6} \right)$$

Setting z=1/6 in The Master Formula gives:$$\log G\left( \tfrac{1}{6} \right) = $$$$\frac{5}{72}(1-\gamma-\log \pi)-\frac{5}{72}\log 2 + \frac{\zeta ' (2)}{2\pi^2} -\frac{\text{Cl}_2(\pi/3)}{4\pi} -\frac{5}{6}\log \Gamma\left( \tfrac{1}{6} \right)$$$$-\frac{1}{2\pi^2}\, \left[ \frac{\pi^2}{9}\log 2 + \frac{5\pi^2}{108}\log 3+ \frac{\zeta ' (2)}{18} + \frac{\kappa_1(6)}{72} \right] =$$$$\frac{5}{72}(1-\gamma-\log \pi)-\frac{1}{8}\log 2 -\frac{5}{216}\log 3+ \frac{17 \, \zeta ' (2)}{36\pi^2} -\frac{\text{Cl}_2(\pi/3)}{4\pi}$$$$ -\frac{5}{6}\log \Gamma\left( \tfrac{1}{6} \right) - \frac{\kappa_1(6)}{144\pi^2} $$

-------------------------

Barnes' function at z=1/6 and z=5/6:$$\log G\left( \tfrac{1}{6} \right) = $$$$\frac{5}{72}(1-\gamma-\log \pi)-\frac{1}{8}\log 2 -\frac{5}{216}\log 3+ \frac{17 \, \zeta ' (2)}{36\pi^2} -\frac{\text{Cl}_2(\pi/3)}{4\pi} $$$$-\frac{5}{6}\log \Gamma\left( \tfrac{1}{6} \right) - \frac{\kappa_1(6)}{144\pi^2} $$
$$\log G\left( \tfrac{5}{6} \right) = $$$$\frac{5}{72}(1-\gamma)-\frac{7}{24}\log 2 -\frac{5}{216}\log 3 - \frac{17}{72}\log \pi+ \frac{17 \, \zeta ' (2)}{36\pi^2} +\frac{\text{Cl}_2(\pi/3)}{4\pi} $$$$+\frac{1}{6}\log \Gamma\left( \tfrac{1}{6} \right) - \frac{\kappa_1(6)}{144\pi^2} $$

$$ G\left( \tfrac{1}{6} \right) = \frac{e^{5(1-\gamma)/72}}{2^{1/8}\, 3^{5/216}\, \pi^{5/72}\, \Gamma\left( \tfrac{1}{6} \right)^{5/6} }\, \, \text{exp}
\left( \frac{17 \, \zeta ' (2)}{36\pi^2} -\frac{\text{Cl}_2(\pi/3)}{4\pi} - \frac{\kappa_1(6)}{144\pi^2} \right) $$
$$ G\left( \tfrac{5}{6} \right) = \frac{e^{5(1-\gamma)/72}\, \Gamma\left( \tfrac{1}{6} \right)^{1/6} }{2^{7/24}\, 3^{5/216}\, \pi^{17/72}\, }\, \, \text{exp}
\left( \frac{17 \, \zeta ' (2)}{36\pi^2} +\frac{\text{Cl}_2(\pi/3)}{4\pi} - \frac{\kappa_1(6)}{144\pi^2} \right) $$
 
Last edited:
  • #34
I'm wondering... Have any of you either managed to prove the multiplication formula for the Barnes' function, or even come across a not-insanely-difficult proof for it? I've had no luck with either.

And I stubbornly refuse to use it, because I can't prove it. I know, I know, it's silly, but... [ "I'm with stupid --> (Headbang) "].

Anyhoo, here it is:$$G(n\, z) = $$$$n^{n^2z^2/2-nz+5/12}(2\pi)^{(n-1)(1-nz)/2} \text{exp} \Bigg((1-n^2)\, \zeta ' (-1)\Bigg)\, \times$$$$\prod_{i=0}^{n-1}\, \prod_{j=0}^{n-1} G\left(z+\frac{i+j}{n}\right)$$For $$n\in \mathbb{N}$$
 
  • #35
I haven't thought about it much, but perhaps it can be derived by using the multiplication formula for the Hurwitz zeta function.
 
  • #36
Random Variable said:
I haven't thought about it much, but perhaps it can be derived by using the multiplication formula for the Hurwitz zeta function.
I think you might be right there, RV... There's nothing scientific about it, obviously, but I 'feel' like I'm not far off it. At least that's the hope: just a bit more gruntwork and I'll accidentally stumble across it when least expected.

It's quite a formidable formula, though... (Headbang)I suspect the relation $$\log G(1+z)-z\log \Gamma(z)= \zeta ' (-1)-\zeta ' (-1,z)$$ might also offer a decent starting point.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
14K
  • · Replies 14 ·
Replies
14
Views
19K
  • · Replies 19 ·
Replies
19
Views
20K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 4 ·
Replies
4
Views
15K
  • · Replies 7 ·
Replies
7
Views
1K