DreamWeaver
- 297
- 0
Next, we consider the Barnes function at $$z=1/4$$ and $$z=3/4$$. Setting $$z=1/4$$ in the trig series gives:$$\mathscr{S}_{\infty}\left(\tfrac{1}{4}\right) = \sum_{k=1}^{\infty}\frac{\log k}{k^2}\cos\left(\frac{\pi k}{2}\right) \equiv $$In the previous 3-case, we split this into 3 sums, but in this 4-case, the first and third sums vanish, due to the factors \cos(\pi/2) and \cos(3\pi/2) respectively. Consequently, we have$$\mathscr{S}_{\infty}\left(\tfrac{1}{4}\right) = \cos \pi \, \sum_{k=0}^{\infty}\frac{\log(4k+2)}{(4k+2)^2} + \cos 2\pi \, \sum_{k=0}^{\infty}\frac{\log(4k+4)}{(4k+4)^2} = $$$$- \sum_{k=0}^{\infty} \Bigg\{ \frac{\log 2}{(2k+1)^2} + \frac{\log(2k+1)}{(2k+1)^2} \Bigg\} + \sum_{k=0}^{\infty} \Bigg\{ \frac{2\log 2 }{(k+1)^2} + \frac{\log(k+1)}{(k+1)^2} \Bigg\} = $$$$- \chi(2)\, \log 2 + \chi ' (2) + 2\, \zeta(2)\, \log 2 - \zeta ' (2)$$Where $$\chi(x)$$ is the Legendre Chi function:
$$\chi(x) = \sum_{k=0}^{\infty}\frac{1}{(2k+1)^x}$$
By comparison with the series definition of the Riemann Zeta function, a simple calculation shows the following equivalence:$$\chi(x) = \zeta (x) - \frac{1}{2^x} \zeta(x) = (1-2^{-x}) \zeta(x)$$Differentiating both sides gives:$$\chi ' (x) = 2^{-x} \zeta (x)\, \log 2 + (1-2^{-x}) \zeta ' (x)$$Setting $$x=2$$ gives:$$\chi(2) = \frac{3}{4}\zeta(2) = \frac{\pi^2}{8}$$$$\chi ' (2) = \frac{\zeta(2)}{4}\log 2 + \frac{3}{4}\zeta ' (2) = \frac{\pi^2}{24}\log 2+ \frac{3}{4}\zeta ' (2)$$
Substituting these values back into$$- \chi(2)\, \log 2 + \chi ' (2) + 2\, \zeta(2)\, \log 2 - \zeta ' (2)$$gives$$\mathscr{S}_{\infty}\left(\tfrac{1}{4}\right) = \frac{\pi^2}{4}\log 2 - \frac{\zeta ' (2)}{4} $$
Setting $$z=1/4$$ in The Master Formula then gives:
$$\frac{3}{32} (1-\gamma - \log 2\pi) +\frac{\zeta ' (2)}{2\pi^2}
- \frac{ \text{Cl}_2(\pi/2) }{4\pi}
-\frac{3}{4} \log \Gamma \left( \tfrac{1}{4} \right) -\frac{1}{2\pi^2} \left[ \frac{\pi^2}{4}\log 2 - \frac{\zeta ' (2)}{4} \right]=$$$$\frac{3}{32} (1-\gamma - \log \pi) - \frac{7}{32}\log 2 +\frac{5 \, \zeta ' (2)}{8\pi^2}
- \frac{ G }{4\pi}
-\frac{3}{4} \log \Gamma \left( \tfrac{1}{4} \right)$$Employing the reflection formula gives the case where $$z=3/4$$.
-------------------------
Barnes' function at z=1/4 and z=3/4:
$$\log G\left( \tfrac{1}{4} \right) = \frac{3}{32} (1-\gamma - \log \pi) - \frac{7}{32}\log 2 +\frac{5 \, \zeta ' (2)}{8\pi^2}
- \frac{ G }{4\pi}
-\frac{3}{4} \log \Gamma \left( \tfrac{1}{4} \right)$$
$$\log G\left( \tfrac{3}{4} \right) = \frac{3}{32} (1-\gamma) - \frac{11}{32}\log 2\pi +\frac{5 \, \zeta ' (2)}{8\pi^2}
+ \frac{ G }{4\pi}
+\frac{1}{4} \log \Gamma \left( \tfrac{1}{4} \right)$$
$$G\left( \tfrac{1}{4} \right) = \frac{e^{3(1-\gamma)/32}}{2^{7/32}\, \pi^{3/32}\, \Gamma \left( \tfrac{1}{4} \right)^{3/4} }\, \, \text{exp} \left( \frac{5 \, \zeta ' (2)}{8\pi^2}
- \frac{ G }{4\pi} \right) $$
$$G\left( \tfrac{3}{4} \right) = \frac{e^{3(1-\gamma)/32\, } \Gamma \left( \tfrac{1}{4} \right)^{1/4} }{ (2\pi)^{11/32} }\, \, \text{exp} \left( \frac{5 \, \zeta ' (2)}{8\pi^2}
+ \frac{ G }{4\pi} \right)$$
$$\chi(x) = \sum_{k=0}^{\infty}\frac{1}{(2k+1)^x}$$
By comparison with the series definition of the Riemann Zeta function, a simple calculation shows the following equivalence:$$\chi(x) = \zeta (x) - \frac{1}{2^x} \zeta(x) = (1-2^{-x}) \zeta(x)$$Differentiating both sides gives:$$\chi ' (x) = 2^{-x} \zeta (x)\, \log 2 + (1-2^{-x}) \zeta ' (x)$$Setting $$x=2$$ gives:$$\chi(2) = \frac{3}{4}\zeta(2) = \frac{\pi^2}{8}$$$$\chi ' (2) = \frac{\zeta(2)}{4}\log 2 + \frac{3}{4}\zeta ' (2) = \frac{\pi^2}{24}\log 2+ \frac{3}{4}\zeta ' (2)$$
Substituting these values back into$$- \chi(2)\, \log 2 + \chi ' (2) + 2\, \zeta(2)\, \log 2 - \zeta ' (2)$$gives$$\mathscr{S}_{\infty}\left(\tfrac{1}{4}\right) = \frac{\pi^2}{4}\log 2 - \frac{\zeta ' (2)}{4} $$
Setting $$z=1/4$$ in The Master Formula then gives:
$$\frac{3}{32} (1-\gamma - \log 2\pi) +\frac{\zeta ' (2)}{2\pi^2}
- \frac{ \text{Cl}_2(\pi/2) }{4\pi}
-\frac{3}{4} \log \Gamma \left( \tfrac{1}{4} \right) -\frac{1}{2\pi^2} \left[ \frac{\pi^2}{4}\log 2 - \frac{\zeta ' (2)}{4} \right]=$$$$\frac{3}{32} (1-\gamma - \log \pi) - \frac{7}{32}\log 2 +\frac{5 \, \zeta ' (2)}{8\pi^2}
- \frac{ G }{4\pi}
-\frac{3}{4} \log \Gamma \left( \tfrac{1}{4} \right)$$Employing the reflection formula gives the case where $$z=3/4$$.
-------------------------
Barnes' function at z=1/4 and z=3/4:
$$\log G\left( \tfrac{1}{4} \right) = \frac{3}{32} (1-\gamma - \log \pi) - \frac{7}{32}\log 2 +\frac{5 \, \zeta ' (2)}{8\pi^2}
- \frac{ G }{4\pi}
-\frac{3}{4} \log \Gamma \left( \tfrac{1}{4} \right)$$
$$\log G\left( \tfrac{3}{4} \right) = \frac{3}{32} (1-\gamma) - \frac{11}{32}\log 2\pi +\frac{5 \, \zeta ' (2)}{8\pi^2}
+ \frac{ G }{4\pi}
+\frac{1}{4} \log \Gamma \left( \tfrac{1}{4} \right)$$
$$G\left( \tfrac{1}{4} \right) = \frac{e^{3(1-\gamma)/32}}{2^{7/32}\, \pi^{3/32}\, \Gamma \left( \tfrac{1}{4} \right)^{3/4} }\, \, \text{exp} \left( \frac{5 \, \zeta ' (2)}{8\pi^2}
- \frac{ G }{4\pi} \right) $$
$$G\left( \tfrac{3}{4} \right) = \frac{e^{3(1-\gamma)/32\, } \Gamma \left( \tfrac{1}{4} \right)^{1/4} }{ (2\pi)^{11/32} }\, \, \text{exp} \left( \frac{5 \, \zeta ' (2)}{8\pi^2}
+ \frac{ G }{4\pi} \right)$$