Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The Bekenstein bound : Area versus Volume

  1. Aug 7, 2015 #1
    Dear all ---

    This question raises concerns already expressed in
    https://www.physicsforums.com/threads/the-bekenstein-bound.671770/
    but in a more specific form --- so that, hopefully, a more specific answer may be given.

    With the Bekenstein-bound-saturated-by-BH argument, we have that a sphere of radius R can have at most a.k.R^2/4 information inside.

    Now, let me imagine the following scenario.

    Let us say I have some very light physical device able to store one bit of data. It could be anything, perhaps a piece of mirror oriented in one direction or another --- something stable, localized in empty space, optically readable.

    Now, very, very far away, perhaps a light year away, I place another one. And then another one. And so on, arranging all of this bits of information in an evenly spaced, infinite, _cubic_ grid, laid in almost flat space.

    It seems to me that the attraction between each of these one-bit storage devices is perfectly negligible. Moreover, each device is evenly attracted by the others, so it won't "move". Therefore, we run no risk of them colliding into a BH.

    Now, consider taking a subset of these physical devices. For instance, center on one of them, and draw an imaginary ball of radius R. Clearly, the information storage capacity of this ball grow in R^3. This information storage is accessible: I can always send a lightray, or even a spaceship if that is necessary, go and read some device inside: it will take a while but this is doable.

    My main question is: does this contradict the Bekenstein-bound-saturated-by-BH argument?
    Subquestions:
    - do the agree that this will not collapse into a BH?
    - do we agree that the information storage capacity grows in R^3, and so even if the information density is rather low, it will eventually exceed the a.k.R^2/4 bound?
    - has this been discussed and fixed in any way that someone could explain?

    Many thanks.
     
    Last edited: Aug 7, 2015
  2. jcsd
  3. Aug 7, 2015 #2

    Mentz114

    User Avatar
    Gold Member

    @RayLouvreur

    How can you be sure the lattice will not collapse ? Unless the mirrors are massless I can't see why they shouldn't.
     
  4. Aug 7, 2015 #3
    No.
    You have a hidden assumption - matter in these areas is not correlated. You can say: "But I put a matter there is a way so there is no correlation". But Bekenstein bound tells you that it is NOT possible, because you can't "inject" all this stuff into Universe at some arbitrary moment of time, you have past history, past lightcones, and they intersect, so these areas MUST have a common path, and they are correlated.

    Bekenstein bound tells us about one important property of the Universe: when you take bigger and bigger volumes, information density becomes lower and lower. Ultimately going to 0, which makes a perfect sense (you can calculate Universe wavefunction from the equations of TOE).
     
  5. Aug 7, 2015 #4

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Basically, yes. For any sphere of radius ##R## that is not the horizon of a black hole, the information inside will be less, probably much less, than the bound.

    Initially, yes. But things change as ##R## grows. See below.

    No. In addition to the point tzimie raised, that you can't assume all the information storage devices are uncorrelated, you have overlooked another key point; see below.

    No. This is the other key point you have overlooked.

    Suppose that each information storage device has mass ##m##, and that a sphere of radius ##R## encloses ##N## such devices. Then the mass enclosed inside radius ##R## is ##N m##. Since ##N## increases, basically, with volume enclosed, ##N## should be proportional to ##R^3##, so the total mass ##M## enclosed inside radius ##R## should be proportional to ##m R^3##. We'll call the constant of proportionality ##k##; we don't have to know its numerical value.

    For a given total mass ##M## enclosed inside radius ##R## to be a black hole, we must have ##R \le 2M## (we are using "geometric units" in which ##G = c = 1## for simplicity). Given that ##M## is proportional to ##m R^3##, we have ##R \le 2 k m R^3## as the condition for a black hole to be formed. Dividing through and inverting and taking the square root gives the inequality

    $$
    R^2 \ge \sqrt{\frac{1}{2km}}
    $$

    So as soon as ##R## gets large enough, the assembly you describe will indeed be a black hole. Note that the individual devices don't need to "fall together" for this to happen; a large enough sphere, given constant lattice spacing, will automatically enclose enough mass, per the above inequality, to be a black hole.
     
  6. Aug 7, 2015 #5

    Dale

    Staff: Mentor

    Regardless of how low the density is, there is some limit where there is just so much of it that it will collapse into a black hole.
     
  7. Aug 8, 2015 #6

    naima

    User Avatar
    Gold Member

    The main thing is that all the bits have to be visible from the outside of the sphere. or that there is room enough on the boundary to describe them.
     
  8. Aug 9, 2015 #7

    naima

    User Avatar
    Gold Member

    I will ask Ray's question differently.
    Is a flat Minkowski spacetime with an infinite cubic lattice of motionless dust test particles
    an approximate solution of Einstein equation?
    Each test particle is the center of a great cube with a problem with Beckentein.
    So BH or no BH everywhere?
     
  9. Aug 9, 2015 #8

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Minkowski spacetime by itself is a valid solution. Adding "dust test particles" makes no difference to the solution at all if they are only test particles, because test particles by definition have no stress-energy and do not produce any spacetime curvature. But such objects also cannot contain any information, so they are irrelevant if we're discussing the Bekenstein bound.

    If what you really mean is "Minkowski spacetime with an infinite cubic lattice of motionless objects that can each hold at least one bit of information", then no, that is not even an approximate solution of the field equations, because storing even one bit of information requires nonzero stress-energy and therefore must produce nonzero spacetime curvature. Locally, the objects might contribute only a very small amount of spacetime curvature, so the deviation of the solution from Minkowski spacetime might be undetectable. But globally, the solution will have to be very different; it won't even be close to flat Minkowski spacetime.

    A technical point: the condition you give, "an infinite cubic lattice of motionless objects", is actually not physically possible. A finite lattice of motionless objects is, at least for an instant, provided the lattice isn't too large. (The next instant, the objects will start falling together by their mutual gravity; they might start falling very slowly, so "motionless" might be a decent approximation for quite a while, but it can't be forever.) But an infinite lattice is not, not even for an instant, for the same reason that an infinite static universe is not a solution of the EFE.

    A further technical point: if you include a positive cosmological constant, you can make a finite lattice remain motionless for more than an instant. (It will be an unstable equilibrium, like a pencil balanced on its point, but we don't need to delve into that here.) But it still has to be a finite lattice (compare with the Einstein static universe, which has a finite spatial volume). An infinite lattice can't be made static in this way.
     
  10. Aug 9, 2015 #9

    naima

    User Avatar
    Gold Member

    So what about when with this constant you have a big finite cubic lattice where we have the beckenstein problem?
     
  11. Aug 9, 2015 #10

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Posts #3 and #4 have already answered that, by showing which of the OP's assumptions are not valid. Adding a cosmological constant doesn't change any of that.

    Also, note the qualification I gave to the finite static lattice being a solution: "as long as the lattice is not too large". If the lattice gets large enough, a static solution is no longer possible because the lattice must be inside a black hole, and it is not possible for a finite lattice inside a black hole to be motionless, even for an instant; everything inside a black hole must be falling inward. Adding a cosmological constant doesn't change that either. (It might change the details of exactly how large is "too large"; I haven't checked the exact numbers.)
     
  12. Aug 9, 2015 #11

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Actually, there is a wrinkle here. If we assume that we are talking about an (unstable) Einstein static universe type solution, then there is a different problem with the OP's assumptions. Once we specify the density of the lattice (how many information units there are per unit volume, which tells how much stress-energy there is per unit volume), then we have fixed the entire solution, including its (finite) total spatial volume. And as the density of the lattice goes up, the spatial volume goes down as the 3/2 power of the density--i.e., volume goes down faster than density goes up.

    So the OP's assumption that you can take a lattice of fixed density and keep extending it indefinitely is not true for this kind of solution. A lattice of a given density can only store a fixed amount of information, which goes down as the density goes up.
     
  13. Aug 10, 2015 #12

    Demystifier

    User Avatar
    Science Advisor

    Bekenstein bound seems to be valid for classical processes which do not involve negative energy carrying positive entropy. But quantum effects, like Hawking radiation, do involve negative energy carrying positive entropy. As argued in
    http://lanl.arxiv.org/abs/1507.00591
    it violates Bekenstein bound and suggests that maximal black-hole entropy is proportional to the volume, rather than area.
     
  14. Aug 10, 2015 #13

    naima

    User Avatar
    Gold Member

    I read that Jakobson derived the Eistein equation from entropy proportional to area.
     
  15. Aug 10, 2015 #14

    Demystifier

    User Avatar
    Science Advisor

    Einstein equation is a classical equation, so this is not inconsistent with the idea that in full quantum gravity entropy does not necessarily need to be proportional to area.
     
  16. Aug 10, 2015 #15

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    I'm not sure I understand (and I haven't read through the paper you link to in detail, so it may be that the answer to the question I'm about to ask is "it's explained in the paper"). A black hole emitting Hawking radiation loses energy (mass), and also entropy, as I understand it, at least according to the standard view (i.e., the hole's entropy, taken by itself, still obeys the Bekenstein bound): but the entropy in the emitted radiation is larger than the entropy lost by the hole in the process of emitting it, so the total entropy still increases and the generalized second law holds.
     
  17. Aug 10, 2015 #16

    Demystifier

    User Avatar
    Science Advisor

    According to the standard view, black hole loses energy by absorbing negative energy. This negative energy is entangled with positive energy of Hawking radiation, implying that the absorbed negative energy carries positive entropy. So black hole absorbs positive entropy, which contradicts Bekenstein bound and constitutes the infamous black-hole information paradox. A possible way out of the paradox is to deny the Bekenstein bound.
     
  18. Aug 10, 2015 #17

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    This is one way of looking at it, but it's not the only way. I'll defer further comment until I've read through the paper.
     
  19. Aug 11, 2015 #18

    Demystifier

    User Avatar
    Science Advisor

    I agree that this is not the only way, but that's what semi-classical gravity predicts.
     
  20. Aug 11, 2015 #19

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Semi-classical gravity predicts that a black hole will emit Hawking radiation and lose mass. It does not "predict" that the hole loses mass by absorbing negative energy; that's a particular interpretation of what the math underlying the prediction says, and not the only possible one.
     
  21. Aug 11, 2015 #20

    naima

    User Avatar
    Gold Member

    Could you explain what is this infamous loss information paradox? and why it is a paradox?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: The Bekenstein bound : Area versus Volume
  1. Spires k versus dk (Replies: 17)

Loading...