The chain rule for the Stratonovich integral

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Chain
Click For Summary
The discussion focuses on converting a stochastic differential equation (SDE) from Stratonovich to Itô form and vice versa. The transformation involves using Itô's formula to compute the differential of a function of the process, leading to an SDE that can be expressed in Stratonovich form. A key point is the additional drift term that appears in the Itô form but vanishes in the Stratonovich form, which is crucial for the conversion. The professor emphasizes the importance of assuming that the function is invertible and provides hints regarding the differentiation operations needed for the conversion. The participant acknowledges mistakes and plans to revisit the problem for clarity.
docnet
Messages
796
Reaction score
488
Homework Statement
Verify the chain rule holds for the 1-d Stratonovich integral.
Relevant Equations
$$df(X_t)=f'(X_t)\circ dX_t$$

where ##X_t## solves ##dX_t=bdt+\sigma\circ dW_t##.
Professor says one way to do this is to convert the equations to Itô form and back.

##dX_t=bdt+\sigma\circ dW_t## converted to Itô's SDE is
\begin{align*}
dX_t=&\left(b+\frac{1}{2}\sigma\frac{\partial}{\partial x}\sigma \right)dt+\sigma dW_t.
\end{align*}
We use Itô's formula to compute ##d(f(X_t)).##
\begin{align*}
d(f(X_t))=& \left(\frac{\partial}{\partial t}f+\left(b+\frac{1}{2}\sigma\frac{\partial}{\partial x}\sigma\right)\frac{\partial}{\partial x}f+\frac{\sigma^2}{2}\frac{\partial^2}{\partial x^2}f\right)dt+\sigma\frac{\partial}{\partial x}fdW_t\\
=& \left(\left(b+\frac{1}{2}\sigma\frac{\partial}{\partial x}\sigma\right)f'+\frac{\sigma^2}{2}f''\right)dt + \sigma f'dW_t.
\end{align*}
This is an SDE that's solved by ##f(X_t)##, so it can be converted to the Stratonovich form. To do this, we can see that the ##\frac{\sigma^2}{2}f''=\frac{\sigma}{2}\frac{\partial}{\partial x}(\sigma f') ## term is the additional 'drift' term that disappears in the Stratonovich form.
\begin{align*}
d(f(X_t))=&\left(b+\frac{1}{2}\sigma\frac{\partial}{\partial x}\sigma\right)f'dt+\sigma f'\circ dW_t\\
=& \left(\left(b+\frac{1}{2}\sigma\frac{\partial}{\partial x}\sigma\right)dt+\sigma \circ dW_t\right)f'\\
=& f' dX_t.
\end{align*}

I'm unsure how to get ##f'\circ dX_t## because I don't think I can factor out ##f'## in the second to last line. Since we have the Stratonovich integral symbol ##\circ##, what is the correct step to take? The professor says we can assume that ##f## is invertible. Also she said remember that ##\frac{\partial}{\partial f}=\left(\frac{\partial f}{\partial x}\right)^{-1}\frac{\partial}{\partial x}##, which I'm guessing means an operation that takes ##f## into ##1## . And I didn't use either of these hints the professor gave me, so I'm suspicious.
 
Last edited:
Physics news on Phys.org
well. I can see that I made several mistakes already. I'll post again after spending time with a pen and paper. thanks
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...