Math Amateur
Gold Member
MHB
- 3,920
- 48
I am reading Paul E. Bland's book, "Rings and Their Modules".
I am trying to understand Section 3.1 on categories and need help in understanding the contravariant functor $$\text{Hom}_R(\_, X)$$ as described in Bland, Example 13 in Ch. 3: Categories (page 76).
Example 13 in Ch. 3 reads as follows:
https://www.physicsforums.com/attachments/3635Now, in the functor $$\text{Hom}_R(\_, X) \ : \ Mod_R \longrightarrow Ab$$, $$X$$ is a fixed $$R$$-module.
The functor $$\text{Hom}_R(\_, X)$$ assigns each object $$M$$ in the category $$\text{Mod}_R$$ to an object $$\text{Hom}_R (M,X) $$ in Ab.
(Note that we know that $$\text{Hom}_R(A,B) $$ where $$A$$ and $$B$$ are $$R$$-modules is an abelian group!)
Now $$\text{Hom}_R(\_, X)$$ must also assign each morphism $$f$$ in $$\text{Mod}_R$$ to a morphism $$f^*$$ in Ab. So Bland defines the following assignment of $$f$$ to $$f^*$$:$$\text{Hom}_R(\_, X) (f) = \text{Hom}_R(f, X) = f^* $$
where $$f^* \ : \ \text{Hom}_R(N, X) \longrightarrow \text{Hom}_R(M, X)$$
is given by $$f^*(h) = hf$$... ... BUT ... ... what exactly is $$h$$ ... clearly I need to understand the nature of h to understand $$f^*$$ ... ... can someone please help me with this matter?
Just to show my own thinking and thus specifically why I have a problem ... see the following ...It seems that ... ... $$f \ : \ \text{Mod}_R \longrightarrow \text{Mod}_R \ \ \text{ where } \ \ f \ : \ M \longrightarrow N$$.Now we need $$f$$ to map to $$f^*$$ where $$f^* \ : \ \text{Ab} \longrightarrow \text{Ab} $$ ... ... So an $$f^*$$ defined by
$$f^* \ : \ \text{Hom}_R(N, X) \longrightarrow \text{Hom}_R(M, X)$$
will do ... ... since $$\text{Hom}_R(N, X)$$ and $$\text{Hom}_R(M, X)$$ are abelian groups.Now since $$f^*$$ is defined as $$f(h) = hf$$ we must have $$h \in \text{Hom}_R(N, X)$$ and so $$h$$ is of the form $$h \ : \ N \longrightarrow X$$.
So we have
$$f \ : \ M \longrightarrow N$$ and $$h \ : \ N \longrightarrow X$$
so then ...
$$f^* = hf \ : \ M \longrightarrow X
$$... ... BUT ... problem ... ... $$f^*$$ should be a mapping between $$\text{Hom}_R(N, X)$$ and $$\text{Hom}_R(M, X)$$ ... ... and not a mapping between two $$R$$-modules, $$M$$ and $$X$$.
Can someone please clarify this for me?
Further, can someone criticize my analysis/thinking above?
Help will be appreciated ...
Peter
***NOTE***
I think it may be helpful for MHB members reading this post to be able to see Bland's definition of a functor.
Bland's definition of a functor, therefore, is provided below:View attachment 3636
View attachment 3637
I am trying to understand Section 3.1 on categories and need help in understanding the contravariant functor $$\text{Hom}_R(\_, X)$$ as described in Bland, Example 13 in Ch. 3: Categories (page 76).
Example 13 in Ch. 3 reads as follows:
https://www.physicsforums.com/attachments/3635Now, in the functor $$\text{Hom}_R(\_, X) \ : \ Mod_R \longrightarrow Ab$$, $$X$$ is a fixed $$R$$-module.
The functor $$\text{Hom}_R(\_, X)$$ assigns each object $$M$$ in the category $$\text{Mod}_R$$ to an object $$\text{Hom}_R (M,X) $$ in Ab.
(Note that we know that $$\text{Hom}_R(A,B) $$ where $$A$$ and $$B$$ are $$R$$-modules is an abelian group!)
Now $$\text{Hom}_R(\_, X)$$ must also assign each morphism $$f$$ in $$\text{Mod}_R$$ to a morphism $$f^*$$ in Ab. So Bland defines the following assignment of $$f$$ to $$f^*$$:$$\text{Hom}_R(\_, X) (f) = \text{Hom}_R(f, X) = f^* $$
where $$f^* \ : \ \text{Hom}_R(N, X) \longrightarrow \text{Hom}_R(M, X)$$
is given by $$f^*(h) = hf$$... ... BUT ... ... what exactly is $$h$$ ... clearly I need to understand the nature of h to understand $$f^*$$ ... ... can someone please help me with this matter?
Just to show my own thinking and thus specifically why I have a problem ... see the following ...It seems that ... ... $$f \ : \ \text{Mod}_R \longrightarrow \text{Mod}_R \ \ \text{ where } \ \ f \ : \ M \longrightarrow N$$.Now we need $$f$$ to map to $$f^*$$ where $$f^* \ : \ \text{Ab} \longrightarrow \text{Ab} $$ ... ... So an $$f^*$$ defined by
$$f^* \ : \ \text{Hom}_R(N, X) \longrightarrow \text{Hom}_R(M, X)$$
will do ... ... since $$\text{Hom}_R(N, X)$$ and $$\text{Hom}_R(M, X)$$ are abelian groups.Now since $$f^*$$ is defined as $$f(h) = hf$$ we must have $$h \in \text{Hom}_R(N, X)$$ and so $$h$$ is of the form $$h \ : \ N \longrightarrow X$$.
So we have
$$f \ : \ M \longrightarrow N$$ and $$h \ : \ N \longrightarrow X$$
so then ...
$$f^* = hf \ : \ M \longrightarrow X
$$... ... BUT ... problem ... ... $$f^*$$ should be a mapping between $$\text{Hom}_R(N, X)$$ and $$\text{Hom}_R(M, X)$$ ... ... and not a mapping between two $$R$$-modules, $$M$$ and $$X$$.
Can someone please clarify this for me?
Further, can someone criticize my analysis/thinking above?
Help will be appreciated ...
Peter
***NOTE***
I think it may be helpful for MHB members reading this post to be able to see Bland's definition of a functor.
Bland's definition of a functor, therefore, is provided below:View attachment 3636
View attachment 3637
Last edited: