1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The cross product and dot product of vectors

  1. Jan 21, 2009 #1
    [​IMG]

    i've been working with the AxB in the first one, and found that |A||B|sin(theta) = A x B, and i thought i had found my theta to be 1 degree, but i don't believe that's right. also, when i attempted to do the dot product with the C vector, i got completely lost..these are the last 2 problems on my homework, and any advice towards completely them would be so, so greatly appreciated

    Thank you so much
     
  2. jcsd
  3. Jan 21, 2009 #2

    rock.freak667

    User Avatar
    Homework Helper

    For [itex]\vec{A}=a_1 i+a_2j+a_3k[/itex] and [itex]\vec{B}=b_1i+b_2j+b_3k[/itex]


    [tex]\vec{A}\times \vec{B} = \left|
    \begin{array}{ccc}
    i & j & k\\
    a_1 & a_2 & a_3\\
    b_1 & b_2 & b_3
    \end{array}
    \right| [/tex]
     
  4. Jan 21, 2009 #3
    okay, so using that cross product, i've got (-7.00)[C(7, -8, 0) . (-36, 72, -48)]
    (7.00)(-828)
    =-5796

    does that look right? i believe i did the dot product right, a1b1+a2b2+a3b3

    hm, that definitely does not look right.
     
  5. Jan 21, 2009 #4

    rock.freak667

    User Avatar
    Homework Helper

    What was your vector for [itex]6 \vec{A} \times \vec{B}[/itex] ?
     
  6. Jan 21, 2009 #5
    (-48, 168, -54)

    i think i did it wrong :( i distributed through (2i, 3j, -4k) x (-3i, 4j, 2k)

    what i think my textbook said was i x j = k , ect.

    i've managed to pull something up on matrices, like the way you showed it. going to try to work it out that way now
     
    Last edited: Jan 21, 2009
  7. Jan 21, 2009 #6
    i got -9156 as my answer, and it is wrong =\

    using matrices
    ( i j k) ( 3 4) ( 2 -4) (2 3 )
    (2 3 4) ( 4 2) i - ( -3 2) j + (-3 4) k
    (-3 4 2)
    that led my 6(A x B) to be (132, 48, 8), then i did a1a2 + b1b2 + c1c2 with my C vector and my A x B vector, then i multiplied what i got from that by -7, and it got me -9156, and it is wrong :(

    edit- those matrices look horribly sloppy, but you get the idea
     
  8. Jan 21, 2009 #7

    gabbagabbahey

    User Avatar
    Homework Helper
    Gold Member

    This method is fine; but the way you wrote your vectors is incorrect: A=2i+3j-4k or (2,3,-4) but not (2i, 3j, -4k).

    And you did end up calculating the product incorrectly.

    When you distribute the cross product you need to be mindful of the order in which you write the cross products; i x jj x i...You should get:

    A x B=(2i+3j-4k) x (-3i+4j+2k)= -6(i x i)+8(i x j)+4(i x k)-9(j x i)+12(j x j)+6(j x k)+12(k x i)-16(k x j)-8(k x k)=22i+8j+17k

    And so 6A x B=132i+48j+102k.

    Well, the last component of your 6A x B was incorrect, but that shouldn't have impacted your final answer since C has no z-component.

    Still, you have somehow incorrectly calculated the dot product; 7*132-8*48=924-384=540 which does not give you -9156 when you multiply it by -7.
     
  9. Jan 21, 2009 #8

    rock.freak667

    User Avatar
    Homework Helper



    Find 6A and then cross that vector with B

    kAxB is not the same as k(AxB)
     
  10. Jan 21, 2009 #9
    i figured out the first one, and the second one my roommate got and explained it to me, he did it a really wierd way, idk

    thank you for all your help though!
     
  11. Jan 21, 2009 #10

    gabbagabbahey

    User Avatar
    Homework Helper
    Gold Member

    Yes it is.:surprised
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: The cross product and dot product of vectors
Loading...