Graduate The δ Notation in Calculus of Variations

Click For Summary
The δ notation introduced in "Classical Dynamics of Particles and Systems" represents variations in calculus of variations, specifically relating to changes in a functional J and a path y. The equations indicate that δJ and δy are derived from the partial derivatives with respect to a parameter α, multiplied by the differential dα. This notation signifies the deviation from the actual path taken, allowing for analysis of varied paths. Understanding the geometric interpretation of these variations is crucial for grasping their significance in the calculus of variations. Further resources, including Wikipedia and video sequences, can provide additional clarity on this topic.
sams
Gold Member
Messages
84
Reaction score
2
On page 224 of the 5th edition of Classical Dynamics of Particles and Systems by Stephen T. Thornton and Jerry B. Marion, the authors introduced the ##δ## notation (in section 6.7). This notation is given by Equations (6.88) which are as follows:

$$\delta J = \frac{\partial J}{\partial \alpha}d\alpha$$ $$\delta y = \frac{\partial y}{\partial \alpha}d\alpha$$

I know that the δδ notation stands for the variation from the actual path, but I cannot relate the geometrical interpretation to the above equation. Can anyone please explain the above terms and provide an explanation on why do the right-hand sides of these relations represent the variation (varied path) from the actual path?

Any help is much appreciated. Thank you so much.
 
Physics news on Phys.org
Maybe this image I have found on Wikipedia helps a bit:
1280px-Totales_Differential.png


(by Muhammet Cakir - Eigenes Werk ; https://de.wikipedia.org/wiki/Totales_Differential)
 
  • Like
Likes jedishrfu
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K