# What is Lagrangian dynamics: Definition and 36 Discussions

Introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in 1788, Lagrangian mechanics is a formulation of classical mechanics and is founded on the stationary action principle.
Lagrangian mechanics defines a mechanical system to be a pair

(
M
,
L
)

{\displaystyle (M,L)}
of a configuration space

M

{\displaystyle M}
and a smooth function

L
=
L
(
q
,
v
,
t
)

{\displaystyle L=L(q,v,t)}
called Lagrangian. By convention,

L
=
T

V
,

{\displaystyle L=T-V,}
where

T

{\displaystyle T}
and

V

{\displaystyle V}
are the kinetic and potential energy of the system, respectively. Here

q

M
,

{\displaystyle q\in M,}
and

v

{\displaystyle v}
is the velocity vector at

q

{\displaystyle q}

(
v

{\displaystyle (v}
is tangential to

M
)
.

{\displaystyle M).}
(For those familiar with tangent bundles,

L
:
T
M
×

R

t

R

,

{\displaystyle L:TM\times \mathbb {R} _{t}\to \mathbb {R} ,}
and

v

T

q

M
)
.

{\displaystyle v\in T_{q}M).}

Given the time instants

t

1

{\displaystyle t_{1}}
and

t

2

,

{\displaystyle t_{2},}
Lagrangian mechanics postulates that a smooth path

x

0

:
[

t

1

,

t

2

]

M

{\displaystyle x_{0}:[t_{1},t_{2}]\to M}
describes the time evolution of the given system if and only if

x

0

{\displaystyle x_{0}}
is a stationary point of the action functional

S

[
x
]

=

def

t

1

t

2

L
(
x
(
t
)
,

x
˙

(
t
)
,
t
)

d
t
.

{\displaystyle {\cal {S}}[x]\,{\stackrel {\text{def}}{=}}\,\int _{t_{1}}^{t_{2}}L(x(t),{\dot {x}}(t),t)\,dt.}
If

M

{\displaystyle M}
is an open subset of

R

n

{\displaystyle \mathbb {R} ^{n}}
and

t

1

,

{\displaystyle t_{1},}

t

2

{\displaystyle t_{2}}
are finite, then the smooth path

x

0

{\displaystyle x_{0}}
is a stationary point of

S

{\displaystyle {\cal {S}}}
if all its directional derivatives at

x

0

{\displaystyle x_{0}}
vanish, i.e., for every smooth

δ
:
[

t

1

,

t

2

]

R

n

,

{\displaystyle \delta :[t_{1},t_{2}]\to \mathbb {R} ^{n},}

δ

S

=

def

d

d
ε

|

ε
=
0

S

[

x

0

+
ε
δ

]

=
0.

{\displaystyle \delta {\cal {S}}\ {\stackrel {\text{def}}{=}}\ {\frac {d}{d\varepsilon }}{\Biggl |}_{\varepsilon =0}{\cal {S}}\left[x_{0}+\varepsilon \delta \right]=0.}
The function

δ
(
t
)

{\displaystyle \delta (t)}
on the right-hand side is called perturbation or virtual displacement. The directional derivative

δ

S

{\displaystyle \delta {\cal {S}}}
on the left is known as variation in physics and Gateaux derivative in Mathematics.
Lagrangian mechanics has been extended to allow for non-conservative forces.

View More On Wikipedia.org
1. ### A Are equations of motion invariant under gauge transformations?

We know that all actions are invariant under their gauge transformations. Are the equations of motion also invariant under the gauge transformations? If yes, can you show a mathematical proof (instead of just saying in words)?
2. ### A Independence of generalized coordinates and generalized velocities

How can I make sense of this and further how to think of this in the context of phase space diagrams?
3. ### Spring-mass system with a pendulum using Lagrangian dynamics

I'm stuck in a problem of a spring mass system with a pendulum attached to it as showed in the figure below: My goal is to find the movement equation for the mass, using Lagrangian dynamics. If the spring moves, the wire will move the same amount. Therefore, we can write the x and y position...
4. ### I Proving that ##\omega_0^2 < 2g/l ## for a simple pendulum.

Here is the problem : A pendulum is composed of a mass m attached to a string of length l, which is suspended from a fixed point. When hanging at equilibrium, the pendulum is hit with a horizontal impulse that results in an initial angular velocity ω0. Show that if ω20 < 2g/l, the string will...

11. ### Geodesics and Motion in an EM Field

I've also attached my attempt as a pdf file. My main issue seems to be I only get one A partial term. Any help would be appreciated.
12. ### Cylinder with Displaced Center of Mass Rolling Down Incline

Homework Statement A rigid cylinder of radius ##R## and mass ##\mu## has a moment of inertia ##I## around an axis going through the center of mass and parallel to the central axis of the cylinder. The cylinder is homogeneous along its central axis, but not in the radial and angular directions...
13. ### What is the Lagrangian, equations of motion for this system?

<<Moderator's note: Moved from a technical forum, no template.>> Description of the system: The masses m1 and m2 lie on a smooth surface. The masses are attached with a spring of non stretched length l0 and spring constant k. A constant force F is being applied to m2. My coordinates: Left of...
14. ### Lagrangian Field Theory - Maxwell's Equations

Homework Statement $$L = -\frac{1}{2} (\partial_{\mu} A_v) (\partial^{\mu} A^v) + \frac{1}{2} (\partial_{\mu} A^v)^2$$ calculate $$\frac{\partial L}{\partial(\partial_{\mu} A_v)}$$ Homework Equations $$A^{\mu} = \eta^{\mu v} A_v, \ and \ \partial^{\mu} = \eta^{\mu v} \partial_{v}$$ The...
15. ### Proving stable equilibrium: Rotating circular hoop

Homework Statement A circular hoop of radius R rotates with angular frequency ω about a vertical axis coincident with its diameter. A bead of mass m slides frictionlessly under gravity on the hoop. Let θ be the bead’s angular position relative to the vertical (so that θ = 0 corresponds to the...
16. ### Independence of Position and Velocity in Lagrangian Mechanics

In Lagrangian mechanics, both q(t) and dq/dt are treated as independent parameters. Similarly, in Hamiltonian mechanics q and p are treated as independent. How is this justified, considering you can derive the generalized velocity from the q(t) by just taking a time derivative. Does it have...
17. ### Bead Sliding on Rotating Rod after Motor is Turned Off

Homework Statement A bead of mass m slides in a frictionless hollow open-ended tube of length L which is held at an angle of β to the vertical and rotated by a motor at an angular velocity ω. The apparatus is in a vertical gravitational field. a) Find the bead's equations of motion b) Find...
18. ### A Deriving Equations of Motion in GR

Question Background: I'm considering the Eddington-Robertson-Schiff line element which is given by (ds)^2 = \left( 1 - 2 \left(\frac{\mu}{r}\right) + 2 \left(\frac{\mu^2}{r^2}\right) \right) dt^2 - \left( 1 + 2 \left( \frac{\mu}{r} \right) \right) (dr^2 + r^2 d\theta^2 + r^2 \sin^2{\theta}...
19. ### Example 7-10 Lagrangian Dynamics Marion and Thornton

Homework Statement A particle of mass m is on top of a frictionless hemisphere centered at the origin with radius a" Set up the lagrange equatinos determine the constraint force and the point at which the particle detaches from the hemisphere Homework Equations L=T-U The Attempt at a...
20. ### I Motivation for mass term in Lagrangians

In field theory a typical Lagrangian (density) for a "free (scalar) field" ##\phi(x)## is of the form $$\mathcal{L}=\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi -\frac{1}{2}m^{2}\phi^{2}$$ where ##m## is a parameter that we identify with the mass of the field ##\phi(x)##. My question is...
21. ### Lagrangian Dynamics Homework: Find Missing Term

Homework Statement Homework Equations The last part of this question is an example of this result: The Attempt at a Solution Here is the solution I think L' is missing a term: If we take the Earth as your frame of reference.(i.e. You are stationary, watching the movement of the railway...
22. ### A One Hamiltonian formalism query - source is Goldstein's book

In 3rd edition of Goldstein's "Classical Mechanics" book, page 335, section 8.1, it is mentioned that : In Hamiltonian formulation, there can be no constraint equations among the co-ordinates. Why is this necessary ? Any simple example which will elaborate this fact ? But in Lagrangian...
23. ### Lagrangian of two mass and spring/pulley system

Homework Statement Two blocks of equal mass, m, are connected by a light string that passes over a massless pulley. One block hangs below the pulley, while the other sits on a frictionless horizontal table and is attached to a spring of constant k. Let x=0 be the equilibrium position of the...
24. ### A question on Lagrangian dynamics

Hi all, I've recently been asked for an explanation as to why the Lagrangian is a function of the positions and velocities of the particles constituting a physical system. What follows is my attempt to answer this question. I would be grateful if you could offer your thoughts on whether this is...
25. ### Lagrangian Dynamics: Potential Energy formulation with spring and gra

Hi, I have a conceptual question regarding Lagrangian dynamics. It has to do with the potential energy formulation. My instructor today mentioned something in class that does not make much sense to me. Here is he most basic example that illustrates my confusion: Take a simple 1dof...
26. ### Derivation of Noether's theorem in Lagrangian dynamics

I'm going to run through a derivation I've seen and ask a few questions about some parts that I'm unsure about. Firstly the theorem: For every symmetry of the Lagrangian there is a conserved quantity. Assume we have a Lagrangian L invariant under the coordinate transformation qi→qi+εKi(q)...
27. ### Integration help, Kepler's problem Lagrangian dynamics

Homework Statement Carry out the integration ψ = ∫[M(dr/r2)] / √(2m(E-U(r)) - (M2/r2)) E = energy, U = potential, M = angular momentum using the substitution: u = 1/r for U = -α/r Homework Equations The Attempt at a Solution This is as far as I've gotten: -∫ (Mdu) /...
28. ### Lagrangian Dynamics - Grandfather Clock?

Homework Statement The pendulum of a grandfather clock consists of a thin rod of length L (and negligible mass) attached at its upper end to a fixed point, and attached at its lower end to a point on the edge of a uniform disk of radius R, mass M, and negligible thickness. The disk is free...
29. ### How Do You Formulate Lagrange Equations for a Mass on a Rotating Parabolic Path?

A point of mass m, affected by gravity, is obliged to be in a vertical plan on a parabola with equation z = a.r^2 a is a constant and r is the distance between the point of mass m and the OZ vertical axis. Write the Lagrange equations in the cases that the plan of the parabola is : a) is...
30. ### How Do You Apply Lagrange Multipliers to a Rolling Disk and Fixed Bar System?

Homework Statement Hi all, I need to derive differantial equations of system with lagrange multiplier method, a disk is rolling and a bar is fixed onto the point of a disk http://img130.imageshack.us/img130/1669/adsziss.jpg By deniz120 at 2010-05-31 Homework Equations The...
31. ### Is L=T+w a Universal Definition in Lagrangian Dynamics for Dissipation Systems?

while facing dissipation systems, some books define the L with L=T+w. is it universal? where is its limits? THX!
32. ### Basic Lagrangian dynamics question (setup of problem)

I am currently a grad student. Part of my PhD work will be to formulate a mathematical model of a manufacturing process using Lagrangian dynamics. I am just beginning to delve into the world of variational mechanics, having never had a formal course in the subject. The process involves a...
33. ### Lagrangian Dynamics, calculating virtual force

I'm very happy that I found this forum, hello everyone. I'm studying Lagrangian Dynamics and I can't figure out how to find the generalized forces in a setup like this: ____ ____ | | ___ | | | b1 |===|___|===| b2 | |____| |____| --->x...
34. ### Are There Any PDFs on Lagrangian Dynamics with Problems and Solutions?

Is there any pdf about Lagrangian Dynamics include problem and solution. Thanks...
35. ### How Are Rotational Transformations Applied in Lagrangian Dynamics?

My question pertains to Example 1.2 of Schaum's Outline of Lagrangian Dynamics by Dare A. Wells, chapter 1, page 4. You can view the diagram and the example (1.2) by going to the following link on Amazon.com and clicking on Excerpt, and then going to page 4...
36. ### Lagrangian Dynamics problem - with setup

Lagrangian Dynamics problem -- need help with setup Here's the problem: A simple pendulum of length b and bob with mass m is attached to a massless support moving horizontally with constant acceleration a. Determine the equations of motion. For the pendulum, x = b sin theta and y = b cos...