The Energy Expectation Value for a Moving Hydrogen Atom

Click For Summary
SUMMARY

The forum discussion focuses on calculating the energy expectation value for a moving hydrogen atom using quantum mechanics principles. The integral formulation presented involves the normalization of the wave function ##\psi_0(x)## and the introduction of delta functions to simplify calculations. Key points include the importance of the normalization factor ##1/(2 \pi \hbar)^{3/2}## and the suggestion to work in momentum space for simplicity. The discussion highlights the relevance of center-of-mass coordinates and the Hamiltonian for a two-body system, emphasizing the need for precise mathematical representation in quantum mechanics.

PREREQUISITES
  • Quantum mechanics fundamentals, including wave functions and expectation values
  • Understanding of Hamiltonian mechanics in two-body systems
  • Familiarity with delta functions and their applications in integrals
  • Knowledge of momentum and position representation in quantum systems
NEXT STEPS
  • Study the derivation of the energy expectation value in quantum mechanics
  • Learn about the use of delta functions in quantum integrals
  • Explore the concept of center-of-mass coordinates in two-body problems
  • Investigate the advantages of momentum space representation over position space in quantum calculations
USEFUL FOR

Students and researchers in quantum mechanics, physicists working on atomic systems, and anyone interested in the mathematical foundations of energy calculations in quantum physics.

uxioq99
Messages
11
Reaction score
4
Homework Statement
Let ##\Psi(X, x, t)## be given by
##\Psi(X, x, t) = \int_{\mathbb R^3} g(K) \psi_0(x) e^{iK\cdot X + \left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)} d^3 K##
where ##X## is the center of mass coordinate, ##x## is the relative coordinate, and ##t## is the time. ##\psi_0(x)## is a normalized eigenfunction of the relative Hamiltonian ##H_{\text{Rel}}## such that ##H_{\text{Rel}} \psi_0 (x) = E_0 \psi(x)##. ##g(k)## is a function that peaks in the neighborhood ##K \approx K_0##.
Relevant Equations
##\Psi(X, x, t) = \int_{\mathbb R^3} g(K) \psi_0(x) e^{iK\cdot X + -\frac{i}{\hbar} \left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)} d^3 K##
##\begin{align}
\langle E \rangle &=
\int_{\mathbb R^3}
\int_{\mathbb R^3}
\int_{\mathbb R^3}
\int_{\mathbb R^3}
g^\dagger (\tilde K) g(K) |\psi_0(x)|^2
\left(E_0 +\frac{\hbar^2 |K|^2}{2m}\right)
e^{i(K-\tilde K)\cdot X -\frac{i}{\hbar} \left(\frac{\hbar^2 |K|^2}{2m}-\frac{\hbar^2 |K|^2}{2m}\right)}
d^3 K d^3 \tilde K d^3 x d^3 X \\
&=
\int_{\mathbb R^3} |\psi_0(x)|^2 d^3 x
\int_{\mathbb R^3}
\int_{\mathbb R^3}
\int_{\mathbb R^3}
e^{i(K-\tilde K)\cdot X} d^3 X
g^\dagger (\tilde K) g(K)
\left(E_0 +\frac{\hbar^2 |K|^2}{2m}\right)
e^{-\frac{i}{\hbar} \left(\frac{\hbar^2 |K|^2}{2m}-\frac{\hbar^2 |K|^2}{2m}\right)}
d^3 K
d^3 \tilde K
\\ &=
\left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)
\end{align}##

as the integral over ##X## collapses into a delta function, ##\psi_0## is normalized, and both integrals peak at ##K_0##. Is my reasoning correct? I apologize in advance if my math is poorly formatted. I am still new to the site.

Do I need a factor of ##2 \pi## for the delta function? The expectation value must real because it is observed right? So, I believe that the phase must cancel. Originally, I was curious if one could argue that
##\frac{\hbar^2 |K|^2 - \hbar^2 |\tilde K|^2}{2m} \approx A \frac{\hbar^2 2K}{2m}##
when ##|K-\tilde K|\le\epsilon## and
##A = \frac{1}{\frac{4}{3}\pi\epsilon^3} \int_{\mathcal B(K, \epsilon)} |\tilde K| - |K| d^3 \tilde K##
fixing ##K## and considering ##\tilde K## to be free. This strengthening of the approximation would have introduced a phase. Is that why ##X## has to introduce the ##\delta## function to cancel it out. What are the purpose of ##g(K)## and ##g^\dagger (\tilde K)##?
 
Last edited:
Physics news on Phys.org
I observe time t is missing which should appear in the phase factor. I do not catch "relative" Hamiltonian relative to what, and what is small k.
 
Last edited:
For clarification: If you treat the hydrogen atom as a (non-relativistic) two-body problem with the proton and the electron, then you can introduce new coordinates, the center of mass and relative coordinates,
$$\vec{X}=\frac{1}{M}(m_e \vec{x}_e + m_p \vec{x}_p), \quad \vec{x}=\vec{x}_e-\vec{x}_p.$$
Since there are no operator-ordering problems in writing down the Hamiltonian, working in Gaussian electromagnetic units,
$$\hat{H}=\frac{\vec{p}_e^2}{2m_e} + \frac{\vec{p}_p^2}{2m_p} -\frac{e^2}{|\vec{x}_e-\vec{x}_p|}$$
in terms of the new coordinates and canonical momenta: The canonically conjugated momentum to ##\vec{X}## is ##\vec{P}=\vec{p}_e+\vec{p}_p##, i.e., the total momentum of the entire hydrogen atom, and the canonical momentum to ##\vec{x}## is given by ##\vec{p}=\mu \mathring{\vec{x}}##, where ##\mu=m_e m_p/M## is the reduced mass of the electron-proton system. The Hamiltonian expressed in these coordinates and their conjugate momenta reads
$$\hat{H}=\frac{1}{2M} \vec{P}^2 + \frac{\vec{p}^2}{2 \mu} -\frac{e^2}{r}=\hat{H}\, \quad r=|\vec{x}|.$$
The center of mass thus moves as a free particle, and the energy eigenfunctions are the product of these free-particle energy-eigenfunctions with the usual hydrogensolutions ##\psi_{n \ell m}(\vec{x})##. For the center-of-mass energy eigenfunctions it's most convenient to choose the corresponding momentum eigenfunctions, i.e., the plane waves,
$$u_{\vec{P}}(\vec{X})=\frac{1}{(2 \pi \hbar)^{3/2}} \exp(\mathrm{i} \vec{X} \cdot \vec{P}).$$
With these you build your wave packet for the center-of-mass motion as given as "Relevant Equation".

For the OP: Your reasoning is almost right. You only forgot the normalization factor ##1/(2 \pi \hbar)^{3/2}##. Also I don't understand, why you first calculate the position representation for the center-mass wave function. It's much simpler to just stay in the momentum-representation, i.e., work with the two-body function
$$\Psi(\vec{P},\vec{x})=g(\vec{P}) \psi_0(\vec{x}).$$
Then you don't need to do any calculations at all ;-)).
 
  • Like
Likes   Reactions: uxioq99
@vanhees71 Thank you so much for the insight. I didn't mention this originally, but the question asked me to solve it in position space as a way to build my mathematical stamina. I agree that it would have been nicer in momentum space. @anuttarasammyak Sorry, that I forgot the factor of ##t## while I was typing. ##k## was also supposed to be ##K##. I just joined the site a week ago, and I still don't know how to preview my latex. Is there a button I should be pressing? Thanks again.
 
  • Like
Likes   Reactions: vanhees71 and anuttarasammyak
1676160368436.png

Preview button is on the right side up.
 
  • Like
Likes   Reactions: vanhees71 and uxioq99

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K