The Energy Expectation Value for a Moving Hydrogen Atom

Click For Summary

Homework Help Overview

The discussion revolves around the energy expectation value for a moving hydrogen atom, focusing on the mathematical formulation and interpretation of the problem within quantum mechanics. The original poster presents an integral expression for the expectation value of energy, questioning the correctness of their reasoning and the implications of certain terms in the equation.

Discussion Character

  • Mathematical reasoning, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • The original poster attempts to derive the energy expectation value through a complex integral, raising questions about the necessity of a delta function and the implications of phase cancellation. Other participants suggest clarifying the role of time in the phase factor and the meaning of "relative" Hamiltonian. There is also a discussion on the appropriateness of using center of mass and relative coordinates in the context of the hydrogen atom.

Discussion Status

Participants are actively engaging with the original poster's reasoning, providing insights and corrections regarding normalization factors and the choice of coordinate systems. There is a recognition of the original poster's efforts, with suggestions for alternative approaches and clarifications on mathematical notation. The conversation reflects a collaborative exploration of the topic without reaching a definitive conclusion.

Contextual Notes

Some participants note the original poster's inexperience with the forum and the formatting of mathematical expressions, which may affect the clarity of the discussion. There is also mention of a specific homework requirement to solve the problem in position space, which influences the approach taken by the original poster.

uxioq99
Messages
11
Reaction score
4
Homework Statement
Let ##\Psi(X, x, t)## be given by
##\Psi(X, x, t) = \int_{\mathbb R^3} g(K) \psi_0(x) e^{iK\cdot X + \left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)} d^3 K##
where ##X## is the center of mass coordinate, ##x## is the relative coordinate, and ##t## is the time. ##\psi_0(x)## is a normalized eigenfunction of the relative Hamiltonian ##H_{\text{Rel}}## such that ##H_{\text{Rel}} \psi_0 (x) = E_0 \psi(x)##. ##g(k)## is a function that peaks in the neighborhood ##K \approx K_0##.
Relevant Equations
##\Psi(X, x, t) = \int_{\mathbb R^3} g(K) \psi_0(x) e^{iK\cdot X + -\frac{i}{\hbar} \left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)} d^3 K##
##\begin{align}
\langle E \rangle &=
\int_{\mathbb R^3}
\int_{\mathbb R^3}
\int_{\mathbb R^3}
\int_{\mathbb R^3}
g^\dagger (\tilde K) g(K) |\psi_0(x)|^2
\left(E_0 +\frac{\hbar^2 |K|^2}{2m}\right)
e^{i(K-\tilde K)\cdot X -\frac{i}{\hbar} \left(\frac{\hbar^2 |K|^2}{2m}-\frac{\hbar^2 |K|^2}{2m}\right)}
d^3 K d^3 \tilde K d^3 x d^3 X \\
&=
\int_{\mathbb R^3} |\psi_0(x)|^2 d^3 x
\int_{\mathbb R^3}
\int_{\mathbb R^3}
\int_{\mathbb R^3}
e^{i(K-\tilde K)\cdot X} d^3 X
g^\dagger (\tilde K) g(K)
\left(E_0 +\frac{\hbar^2 |K|^2}{2m}\right)
e^{-\frac{i}{\hbar} \left(\frac{\hbar^2 |K|^2}{2m}-\frac{\hbar^2 |K|^2}{2m}\right)}
d^3 K
d^3 \tilde K
\\ &=
\left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)
\end{align}##

as the integral over ##X## collapses into a delta function, ##\psi_0## is normalized, and both integrals peak at ##K_0##. Is my reasoning correct? I apologize in advance if my math is poorly formatted. I am still new to the site.

Do I need a factor of ##2 \pi## for the delta function? The expectation value must real because it is observed right? So, I believe that the phase must cancel. Originally, I was curious if one could argue that
##\frac{\hbar^2 |K|^2 - \hbar^2 |\tilde K|^2}{2m} \approx A \frac{\hbar^2 2K}{2m}##
when ##|K-\tilde K|\le\epsilon## and
##A = \frac{1}{\frac{4}{3}\pi\epsilon^3} \int_{\mathcal B(K, \epsilon)} |\tilde K| - |K| d^3 \tilde K##
fixing ##K## and considering ##\tilde K## to be free. This strengthening of the approximation would have introduced a phase. Is that why ##X## has to introduce the ##\delta## function to cancel it out. What are the purpose of ##g(K)## and ##g^\dagger (\tilde K)##?
 
Last edited:
Physics news on Phys.org
I observe time t is missing which should appear in the phase factor. I do not catch "relative" Hamiltonian relative to what, and what is small k.
 
Last edited:
For clarification: If you treat the hydrogen atom as a (non-relativistic) two-body problem with the proton and the electron, then you can introduce new coordinates, the center of mass and relative coordinates,
$$\vec{X}=\frac{1}{M}(m_e \vec{x}_e + m_p \vec{x}_p), \quad \vec{x}=\vec{x}_e-\vec{x}_p.$$
Since there are no operator-ordering problems in writing down the Hamiltonian, working in Gaussian electromagnetic units,
$$\hat{H}=\frac{\vec{p}_e^2}{2m_e} + \frac{\vec{p}_p^2}{2m_p} -\frac{e^2}{|\vec{x}_e-\vec{x}_p|}$$
in terms of the new coordinates and canonical momenta: The canonically conjugated momentum to ##\vec{X}## is ##\vec{P}=\vec{p}_e+\vec{p}_p##, i.e., the total momentum of the entire hydrogen atom, and the canonical momentum to ##\vec{x}## is given by ##\vec{p}=\mu \mathring{\vec{x}}##, where ##\mu=m_e m_p/M## is the reduced mass of the electron-proton system. The Hamiltonian expressed in these coordinates and their conjugate momenta reads
$$\hat{H}=\frac{1}{2M} \vec{P}^2 + \frac{\vec{p}^2}{2 \mu} -\frac{e^2}{r}=\hat{H}\, \quad r=|\vec{x}|.$$
The center of mass thus moves as a free particle, and the energy eigenfunctions are the product of these free-particle energy-eigenfunctions with the usual hydrogensolutions ##\psi_{n \ell m}(\vec{x})##. For the center-of-mass energy eigenfunctions it's most convenient to choose the corresponding momentum eigenfunctions, i.e., the plane waves,
$$u_{\vec{P}}(\vec{X})=\frac{1}{(2 \pi \hbar)^{3/2}} \exp(\mathrm{i} \vec{X} \cdot \vec{P}).$$
With these you build your wave packet for the center-of-mass motion as given as "Relevant Equation".

For the OP: Your reasoning is almost right. You only forgot the normalization factor ##1/(2 \pi \hbar)^{3/2}##. Also I don't understand, why you first calculate the position representation for the center-mass wave function. It's much simpler to just stay in the momentum-representation, i.e., work with the two-body function
$$\Psi(\vec{P},\vec{x})=g(\vec{P}) \psi_0(\vec{x}).$$
Then you don't need to do any calculations at all ;-)).
 
  • Like
Likes   Reactions: uxioq99
@vanhees71 Thank you so much for the insight. I didn't mention this originally, but the question asked me to solve it in position space as a way to build my mathematical stamina. I agree that it would have been nicer in momentum space. @anuttarasammyak Sorry, that I forgot the factor of ##t## while I was typing. ##k## was also supposed to be ##K##. I just joined the site a week ago, and I still don't know how to preview my latex. Is there a button I should be pressing? Thanks again.
 
  • Like
Likes   Reactions: vanhees71 and anuttarasammyak
1676160368436.png

Preview button is on the right side up.
 
  • Like
Likes   Reactions: vanhees71 and uxioq99

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K