- #1
- 6,002
- 2,628
I wonder if there is any book that discusses the possibility of existence of a magnetic scalar potential. That is a scalar potential ##\chi## such that $$\vec{B}=\nabla\chi+\nabla\times\vec{A}$$. From Gauss's law for the magnetic field B we can conclude that it will always satisfy laplace's equation, therefore it will seemingly have no time dependence (even in the case of a time dependent vector potential A):
$$\nabla\cdot\vec{B}=0\Rightarrow \nabla\cdot(\nabla\chi+\nabla\times\vec{A})=0\Rightarrow\nabla^2\chi=0$$
Maxwell's Ampere's law seems to give us no additional information about this potential since it will be :
$$\nabla\times\vec{B}=\nabla\times (\nabla\chi+\nabla\times\vec{A})=\nabla\times(\nabla\chi)+\nabla\times(\nabla\times\vec{A})=0+\nabla\times(\nabla\times\vec{A})$$
So can we prove somehow that in most cases we have ##\chi=0## . Are there any specific systems known that ##\chi\neq 0##?
$$\nabla\cdot\vec{B}=0\Rightarrow \nabla\cdot(\nabla\chi+\nabla\times\vec{A})=0\Rightarrow\nabla^2\chi=0$$
Maxwell's Ampere's law seems to give us no additional information about this potential since it will be :
$$\nabla\times\vec{B}=\nabla\times (\nabla\chi+\nabla\times\vec{A})=\nabla\times(\nabla\chi)+\nabla\times(\nabla\times\vec{A})=0+\nabla\times(\nabla\times\vec{A})$$
So can we prove somehow that in most cases we have ##\chi=0## . Are there any specific systems known that ##\chi\neq 0##?