B The law of total probability with extra conditioning

red65
Messages
13
Reaction score
0
TL;DR Summary
the proof of a theorem
Hello, I am studying probability and came across this theorem, it's the law of total probability with extra conditioning, I tried to work out a proof but couldn't ,does anyone know the proof for this :
1672964293581.png

thanks!
 
Mathematics news on Phys.org
1) If you are looking for a proof, you should be very careful about the exact statement. There is more to that statement, right? Don't the ##A_i## need to be a partitioning?
2) If all probabilities are conditional on ##E##, isn't that just another probability where ##E## is the universe and does not need to be included in the notation?
 
red65 said:
TL;DR Summary: the proof of a theorem

Hello, I am studying probability and came across this theorem, it's the law of total probability with extra conditioning, I tried to work out a proof but couldn't ,does anyone know the proof for this :
View attachment 319864
thanks!
That's just the usual equation with a restriction to ##E## as the universal set or sample space. Given the proviso, as above, that the ##A_i## (when restricted to ##E##) partition ##E##.
 
  • Like
Likes FactChecker
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top