B The law of total probability with extra conditioning

AI Thread Summary
The discussion centers on the law of total probability with extra conditioning, where the user seeks a proof. Key points highlight the necessity for the events to partition the sample space and the clarification that conditioning on a specific event can simplify the notation. Participants emphasize that the proof hinges on understanding these conditions. The conversation underscores the importance of precise definitions in probability theorems. Overall, the thread aims to clarify the theorem's proof requirements and implications.
red65
Messages
13
Reaction score
0
TL;DR Summary
the proof of a theorem
Hello, I am studying probability and came across this theorem, it's the law of total probability with extra conditioning, I tried to work out a proof but couldn't ,does anyone know the proof for this :
1672964293581.png

thanks!
 
Mathematics news on Phys.org
1) If you are looking for a proof, you should be very careful about the exact statement. There is more to that statement, right? Don't the ##A_i## need to be a partitioning?
2) If all probabilities are conditional on ##E##, isn't that just another probability where ##E## is the universe and does not need to be included in the notation?
 
red65 said:
TL;DR Summary: the proof of a theorem

Hello, I am studying probability and came across this theorem, it's the law of total probability with extra conditioning, I tried to work out a proof but couldn't ,does anyone know the proof for this :
View attachment 319864
thanks!
That's just the usual equation with a restriction to ##E## as the universal set or sample space. Given the proviso, as above, that the ##A_i## (when restricted to ##E##) partition ##E##.
 
  • Like
Likes FactChecker
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top