The magnetic phase change of an electromagnetic wave during reflection

Dom Tesilbirth
Messages
4
Reaction score
1
Homework Statement
An electromagnetic wave is incident on a water-air interface. The phase of the perpendicular component of the electric field, ##E_\bot##, of the reflected wave into the water is found to remain the same for all angles of incidence. By what angle does the phase of the magnetic field H change?
Relevant Equations
$$\overrightarrow{B}=\dfrac{1}{v}\widehat{k}\times \overrightarrow{E}$$
If the question had mentioned ##\overrightarrow{E}## instead of ##E_\bot##, then we could have used ##\overrightarrow{B}=\dfrac{1}{v}\widehat{k}\times \overrightarrow{E}## to get the direction of the magnetic field. But the question had only mentioned ##E_\bot##. To my understanding, knowing ##E_\bot## is not enough. Because, according to ##\overrightarrow{B}=\dfrac{1}{v}\widehat{k}\times \overrightarrow{E}=\dfrac{1}{v}\widehat{k}\times \left( \overrightarrow{E}_{\parallel}+\overrightarrow{E}_{\bot}\right)##, the change in ##\overrightarrow{B}## also depends on the change in ##\overrightarrow{E_\parallel}##.Is there any other way to solve this problem?
 
Physics news on Phys.org
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top