# The maximum speed the truck can go without sliding

## Homework Statement

A crate of eggs is located on the back of a truck. The truck rounds a circular bend in the road with radius of 35 meters. If the coefficient of static friction between the crate and the truck is 0.6, what is the maximum speed the truck can go without the crate sliding?

F=mv2/r
Fs=μsn

## The Attempt at a Solution

Hey guys, can you please check my answer for this question, I'm not entirely sure it is correct...

Firstly, I took the normal force of the truck to get n=mg, as it is not moving vertically. This results in the force of static friction (Fs) to be: Fs=μsmg.

Secondly, this static friction is providing the centripetal force of the truck to go around in a circular motion and so resulting in the following equation: Fs=F=mv2/r = μsmg.

So with algebra I made velocity the subject. The masses cancel out leaving: v2/r = μsg and so resulting in v=√(μsgr)

Now I enter the variables v=√(0.6*9.8*35), giving the velocity of 14.35ms-1.

Looks fine to me :)

PhanthomJay