MHB The Meaning of Degenerate in the Context of Linear Algebra

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question I encountered.

Show that \(f(x)\rightarrow f'(x)\) is degenerate on \(R[x]_{n}\) and is non-degenerate on \(<\sin t,\,\cos t>\)

Don't give me the full answer but explain what is meant by degeneracy in this context.

Thank you.
 
Physics news on Phys.org
It means the derivative map has a non-trivial null space.
 
Deveno said:
It means the derivative map has a non-trivial null space.

Thank you very much. Now I understand it perfectly. I am doing an Advanced Linear Algebra course and I am not getting everything perfectly. I think I have to put a lot of effort into it. :)
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Back
Top