The potential electric and vector potential of a moving charge

AI Thread Summary
The discussion focuses on the application of the Liénard-Wiechert equations to determine the electric and vector potentials of a moving charge. The participant presents a condition involving the particle's position and velocity, expressed mathematically, to establish the relationship between the electric potential and the distance from the charge. They also mention the vector potential derived from the current density and question whether their understanding aligns with established theories, particularly regarding the speed of potential propagation. There is a reference to Feynman's Lectures, emphasizing the nuances of gauge choices in electromagnetic theory. The inquiry seeks validation of their approach and understanding of these concepts.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
Captura de tela de 2022-06-10 17-45-02.png

I could try to apply the Liénard-WIechert equations immediatally, but i am not sure if i understand it appropriately, so i tried to find by myself, and would like to know if you agree with me.

When the information arrives in ##P##, the particle will be at ##r##, such that this condition need to be satisfied:
$$\frac{(vt-r)^2}{v^2} = \frac{r^2+b^2}{c^2} (1)$$

So, we have $$\phi = \frac{kq}{s} = \frac{kq}{r}$$
Also, $$ \vec A = \frac{\mu}{4\pi} \int \frac{J' dV'}{|r-r'|} = \frac{\mu}{4\pi} \frac{q v}{|r|}$$

such that r satisfies ##(1)##.

Is it right? Do you agree with it? I am asking because i remember to read somewhere that the potential electric not necessarilly need to move at speed of light, but i think this is the case in Lorenz gauge. I haven't assumed any gauge here.
 
Physics news on Phys.org
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top