The potential electric and vector potential of a moving charge

Click For Summary
The discussion focuses on the application of the Liénard-Wiechert equations to determine the electric and vector potentials of a moving charge. The participant presents a condition involving the particle's position and velocity, expressed mathematically, to establish the relationship between the electric potential and the distance from the charge. They also mention the vector potential derived from the current density and question whether their understanding aligns with established theories, particularly regarding the speed of potential propagation. There is a reference to Feynman's Lectures, emphasizing the nuances of gauge choices in electromagnetic theory. The inquiry seeks validation of their approach and understanding of these concepts.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
Captura de tela de 2022-06-10 17-45-02.png

I could try to apply the Liénard-WIechert equations immediatally, but i am not sure if i understand it appropriately, so i tried to find by myself, and would like to know if you agree with me.

When the information arrives in ##P##, the particle will be at ##r##, such that this condition need to be satisfied:
$$\frac{(vt-r)^2}{v^2} = \frac{r^2+b^2}{c^2} (1)$$

So, we have $$\phi = \frac{kq}{s} = \frac{kq}{r}$$
Also, $$ \vec A = \frac{\mu}{4\pi} \int \frac{J' dV'}{|r-r'|} = \frac{\mu}{4\pi} \frac{q v}{|r|}$$

such that r satisfies ##(1)##.

Is it right? Do you agree with it? I am asking because i remember to read somewhere that the potential electric not necessarilly need to move at speed of light, but i think this is the case in Lorenz gauge. I haven't assumed any gauge here.
 
Physics news on Phys.org
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 4 ·
Replies
4
Views
959
Replies
1
Views
2K
Replies
12
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
64
Views
5K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
Replies
6
Views
1K