MHB The proof of the infinite geometric sum

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everybody,

I need some help with find M in the definition of the convergence for infinite series.

The question ask, Prove that for $-1<r<1$, we have $\sum_{n=0}^{\infty} r^n=\frac{1}{1-r}$.
Work:
Let $\sum_{n=0}^{k} r^n=S_k$. Let $\varepsilon>0$, we must an $M\in\Bbb{N}$ such that $k\ge M$, $\left| S_k-0 \right|<\varepsilon$. That is $\left|\sum_{n=0}^{k} r^n \right|<\varepsilon$
Finding an M,

$S_k=\sum_{n=0}^{k-1} r^n=\frac{1-r^n}{1-r}$
Proof by Induction
For k=1, $S_1=\sum_{n=0}^{1-1} r^n=\frac{1-r^n}{1-r}$
$S_1=\sum_{n=0}^{0} r^n=1=\frac{1-r}{1-r}$
Assume for all k in the natural numbers, $S_k=\sum_{n=0}^{k-1} r^n=\frac{1-r^n}{1-r}$
Then, Need to show $S_{k+1}=\sum_{n=0}^{k} r^n=\frac{1-r^{1+n}}{1-r}$
Here is where I am stuck.
Thanks,
Cbarker1
 
Physics news on Phys.org
Re: the proof of the infinite geometric sum

$$\frac{1-r^{n+1}}{1-r}=\frac{(1-r)(1+r+r^2+\cdots+r^{n})}{1-r}$$
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top