yuiop
- 3,962
- 20
ThanksPAllen said:Great post, thanks. I will think more about a few details, but this seems like real progress.
I should however add a word of caution in line with the rules of the forum. If you use coordinate clocks as I described earlier and conclude that time and the speed of light (and all other physical processes) slow down as we get closer to the event horizon, then you reach the opposite conclusion to the accepted wisdom or textbook conclusions. The textbook position is that the coordinate measurements of the Schwarzschild observer are non physical and that the local measurements are the "real" physically meaningful measurements and that light continues at the speed of of light right through the event horizon. However, even the local measurements have their limitations, because the the local measurements imply that you cannot have a static observer exactly at the event horizon so any measurements by a static observer at the event horizon are invalid or at the very least indeterminate. This is usually supported by calculations of what a free falling observer measures as they fall through the event horizon, using their proper time and rulers. The coordinate observer would counter that even the proper time of the free falling observer is subject to time dilation (gravitational and velocity related) and that the clock of the free falling observer stops at the event horizon would stop and such an observer would not be in a position to make any measurements. For example the velocity of anything measured by a static or free falling observer at the event horizon would effectively be d/t = 0/0. In brief, the conclusion that time or the speed of light slows down lower down in a gravitational field is *NOT* the official position. To me personally, there are two contradictory, but apparently (to me) equally valid physical interpretations of what happens at the event horizon and below and maybe in the future a quantum theory on gravity might shed more light on the physical interpretation. Until then all we can do is predict what a given observer would actually measure and GR gives an unambiguous answer to this, while the "reality" is left open to interpretation.
PAllen said:A follow up question is what a static observer at 2R would measure for lightspeed perpendicular to the radial direction? This calculation seems more messy. I would guess that it comes out different. If true, we predict that an abserver on the surface of neutron star would measure speed of light noticeably different radially versus tangentially.
The horizontal speed of light is fairly easy to calculate. Just set the proper time dtau and dr to zero in the Schwarzschild metric and solve for the coordinate angular velocity. The result is that the coordinate horizontal speed of light is c*sqrt(1-2m/r), while the coordinate vertical speed of light is c*(1-2m/r).
There appears to be a directional asymmetry in the coordinate speed of light, but this may or not show up in corrected local measurements depending on how local distance is operationally defined. One practical way to measure this would be to construct a vertical MMX type apparatus in flat space far from the gravitational source. The device is set up so that so that the arms are of equal length (say one meter) as confirmed by a interferometer at the centre of the device. This device is carefully transported closer to the gravitational source. Now one difficulty with vertical rulers is that they may be stretched or compressed by tidal forces so we cannot be sure that their proper length has not changed making them useless as measuring devices. To compensate for this we adjust the vertical arm so that the MMX device gives a null result and rotate the device by 90 degrees, so the horizontal arm becomes the vertical arm and the vertical arm becomes the horizontal arm. When we are satisfied that that the device is supported and tuned in such a way that it gives a null result an any orientation then we may have a practical ruler. Now if we use a local clock that is synchronised with coordinate time, then the locally measured speed of light will be c*sqrt(1-2m/r) in any direction over a short distance. In a nutshell, the speed of light measured using coordinate time and local rulers is isotropic, but height dependent.
If we carry out radar speed of light measurements over extended distances from a given coordinate r, the speed of light above r will appear to be faster and the speed of light below r will appear to be slower than the local speed of light, whether we use short rulers laid end to end to define distance, or use coordinate radius difference (1/2*circumference/pi) to define distance, but the magnitudes will be different. This is true even if we use the un-tweeked proper time of a single stationary natural clock located at r. The coordinate difference distance is shorter than the ruler distance because the local rulers are subject to gravitational length contraction (but that is a slightly controversial way of putting things, but it works as a convenient mental convenience for me and the maths works out).
Since there are many ways to measure the speed of light it might be less confusing to specify a particular observer and a particular measurement method and we should be able to tell you exactly what that observer will measure, but different people may differ in the physical interpretation of what that measurement "really" means physically.
Finally, I should perhaps mention that the integrated ruler distance can appear in forms that look very different, but yield identical numerical results, so it is good to check results numerically if there appears to be a contradiction. We have had this confusion in the past in different threads.