PAllen said:
For this, the question of what line of simultaneity to use for calculating proper distance would rear its head with a vengeance. None of the arguments that coordinate t=constant apply. Thus, before calculating anything you would have to arrive at some physically convincing model of the the path of simultaneity is for one of these observers. It would be different for each one (head versus tail). Thus, if head thinks tail is fixed 1 meter away, tail will disagree and find distance varying because of a different simultaneity. And no, I don't know what the actual answer is except that it will be different for head and tail, and neither will see coordinate time as the basis of simultaneity.
Given the worldline of an observer, accelerated or not, in curved space-time or flat, for points sufficiently close to the observer there is a fairly natural notion of simultaneity, and of distance.
This happens because the geometry of space-time is locally Lorentzian - as is described in MTW on pg 19, if you happen to have that textbook. I'll give a short quote:
MTW said:
On the surface of an apple within the space of a thumbrprint, the geometry is Euclidean (Figure 1.1 - the view in the magnifying glass). In spacetime, within a limited region, the geometry is Lorentzian. On the apple the distances between point and point accord with the theorems of Euclid. In spacetime the intervals ("proper distance,", "proper time") between event and event satisfy the corresponding theorems of Lorentz-Minkowski geometry.
Given a specific metric, it's fairly easy to recover said notion of local distance. What you do is introduce a set of coordinates that make the space-time metric at that point diagonal and unity (assuming that you've set c=1). All you need to do is to find a linear transformation that diagonalizes the metric.
You can transform to new coordinates either by the usual tensor transformation laws, or by simple algebra. It's easiest if you write the old variables in terms of the new, i.e. if you have a metric in (x,t) and you want to change to (x', t') you can write:
x = ax' + bt'
t = cx' + et'
then you can just write dx = a dx'+b dt' and dt = c dx' + e dt and substitute to get the metric in terms of x' and t'.
'
Given such a swath of space-time with a locally Minkowskian metric, the coordinate differences actually represent physical distances (in the small region where space-time is flat), so you can read distances directly from the new coordinates, and you can define the natural notion of local simultaneity for said observer by setting dt' = 0.
This notion of simultaneity will make the speed of light isotropic, as should be obvious (I hope) from the Mikowskian metric, which defines the path light must take by ds^2 = 0.
In curved space-time, the notion of how to extend the notion of simultaneity beyond a small local region is not clearcut. One possibility, which however, isn't unique, is especially useful. This is to extend the definition of simultaneity by drawing geodesic curves through the locally simultaneous points as described above. This leads to "fermi normal" coordinates. Another way of saying this is that simultaneous points in time are generated by the set of space-like geodesics passing through your observer's worldline at a given point that are orthogonal to said worldline.
While this seems like (and is) a very natural choice for simultaneity, it's not the only one in common use by any means. Cosmologists, for instance, do NOT use fermi normal coordinates when they report on distances within the universe. They use surfaces of constant cosmological time, cosmological time is time elapsed in the comoving frame since the big bang, instead.
The fermi-normal defintion of simultaneity (and of distance) is useful because it's compatible with the notion of Born rigidity. You can construct a family of observers all of whom measure the distance to their neighbors as constant, which is exactly what you need for a notion of distance that's compatible with Born rigidity.
If you try this with the cosmologists notion of distance, you find that it won't work, because observers with constant coordinates don't maintain a constant distance from each other, so the conditions you need for Born rigidity aren't met by the coordinate system.
It's a bit off the topic, but
https://www.physicsforums.com/showthread.php?t=435999&highlight=fermi+normal does do a series expansion for fermi-normal coordinates for observers "falling from infinity" into a black hole, which provides one answer to the question about a "constant distance" observer falling into a black hole.
On a more general note, there's some reasonable-looking discussion at the Wikipedia at
http://en.wikipedia.org/w/index.php?title=Rindler_coordinates&oldid=392242531, about Rindler coordinates which are the flat space-time analogue of Fermi-normal coordinates which goes into some detail about distances - though it's a bit lacking in references, alas.
I'd recommend getting familiar with Rindler coordinates first before worrying too much about Fermi-normal coordinates. MTW is a good reference, if you have it, and a bit more reliable than the wiki article - not that it helps if you don't have the textbook. This would address some of your concerns about the issue of the static observers accelerating.
There are apparently exact solutions for Fermi-normal coordinates in the literature for the interior Schwarzschild space-time, unfortunately I don't have access to compare to my series expansion for the exterior region, i.e http://jmp.aip.org/resource/1/jmapaq/v51/i2/p022501_s1?isAuthorized=no .