MHB The splitting field of f over F is also the splitting field of f also over E

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Field Splitting
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $F\subseteq E\subseteq K$ be consecutive field extensions and $f\in F[x]$ be non-constant.
I want to show that if $K$ is the splitting field of $f$ over $F$, then $K$ is the splitting field of $f$ also over $E$.

Since $K$ is the splitting field of $f$ over $F$, we have that $f(x) = c\prod (x-a_i)^{m_i}$, where $m_i$ are non-negative integers and $(x-a_i)\in K[x]$.
Since $F\subseteq E$ we have that $f\in E[x]$. Therefore, $K$ must be also the splitting field of $f$ also over $E$.

Is this correct? (Wondering)
 
Physics news on Phys.org
I changed something... Since $K$ is the splitting field of $f$ over $F$, we have that $f(x) = c(x-a_1)\cdots (x-a_n)$, where $c\in F, a_1, \dots a_n\in K$ and $K=F[a_1, \dots , a_n]$.

Since $F\subseteq E$ we have that $f(x) = c\prod (x-a_i)^{m_i}\in E[x]$ and $F[a_1, \dots , a_n]\subseteq E[a_1, \dots , a_n] \Rightarrow K\subseteq E[a_1, \dots , a_n]$.

Since $E\subseteq K$ and $a_i\in K$ we have that $E[a_1, \dots , a_n]\subseteq K$.

Therefore, $K=E[a_1, \dots , a_n]$.

So, $K$ is the splitting field of $f$ also over $E$.
Is this correct? Could I improve something? (Wondering)
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top