MHB The splitting field of f over F is also the splitting field of f also over E

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Field Splitting
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $F\subseteq E\subseteq K$ be consecutive field extensions and $f\in F[x]$ be non-constant.
I want to show that if $K$ is the splitting field of $f$ over $F$, then $K$ is the splitting field of $f$ also over $E$.

Since $K$ is the splitting field of $f$ over $F$, we have that $f(x) = c\prod (x-a_i)^{m_i}$, where $m_i$ are non-negative integers and $(x-a_i)\in K[x]$.
Since $F\subseteq E$ we have that $f\in E[x]$. Therefore, $K$ must be also the splitting field of $f$ also over $E$.

Is this correct? (Wondering)
 
Physics news on Phys.org
I changed something... Since $K$ is the splitting field of $f$ over $F$, we have that $f(x) = c(x-a_1)\cdots (x-a_n)$, where $c\in F, a_1, \dots a_n\in K$ and $K=F[a_1, \dots , a_n]$.

Since $F\subseteq E$ we have that $f(x) = c\prod (x-a_i)^{m_i}\in E[x]$ and $F[a_1, \dots , a_n]\subseteq E[a_1, \dots , a_n] \Rightarrow K\subseteq E[a_1, \dots , a_n]$.

Since $E\subseteq K$ and $a_i\in K$ we have that $E[a_1, \dots , a_n]\subseteq K$.

Therefore, $K=E[a_1, \dots , a_n]$.

So, $K$ is the splitting field of $f$ also over $E$.
Is this correct? Could I improve something? (Wondering)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top