MHB The Standard Metric on C^d .... Garling, Corollary 11.1.5 ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Metric Standard
Click For Summary
The discussion revolves around understanding Corollary 11.1.5 from D. J. H. Garling's "A Course in Mathematical Analysis." The first question addresses the equality and inequality involving the distance function, where it is clarified that the equality is based on the definition of the distance in C^d, and the inequality stems from the triangle inequality for complex numbers. The second question highlights that the inequality is an application of the triangle inequality in R^d, as both |z_j| and |w_j| are real numbers. The participants emphasize the importance of these inequalities in proving properties of metric spaces. Overall, the conversation seeks clarity on the mathematical principles underpinning these corollaries.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading D. J. H. Garling's book: "A Course in Mathematical Analysis: Volume II: Metric and Topological Spaces, Functions of a Vector Variable" ... ...

I am focused on Chapter 11: Metric Spaces and Normed Spaces ... ...

I need some help with Corollary 11.1.5 ...

Corollary 11.1.5 reads as follows:

View attachment 7906
In the above proof by Garling we read the following:

" ... ... : using the inequality of the previous corollary,$$d( z + w , 0 ) = \left( \sum_{ j = 1 }^d \mid z_j + w_j \mid^2 \right)^{ \frac{1}{2} } \le \left( \sum_{ j = 1}^d ( \mid z_j \mid + \mid w_j \mid )^2 \right)^{ \frac{1}{2} } $$$$\le \left( \sum_{ j = 1 }^d \mid z_j \mid^2 \right)^{ \frac{1}{2} } + \left( \sum_{ j = 1 }^d \mid w_j \mid^2 \right)^{ \frac{1}{2} }= d(z,0) + d(w,0) $$
My questions are as follows:Question 1

Can someone please explain exactly why we have:$$d( z + w , 0 ) = \left( \sum_{ j = 1 }^d \mid z_j + w_j \mid^2 \right)^{ \frac{1}{2} } \le \left( \sum_{ j = 1}^d ( \mid z_j \mid + \mid w_j \mid )^2 \right)^{ \frac{1}{2} } $$How/why does this hold true?
Question 2

Can someone please explain exactly why we have:$$\left( \sum_{ j = 1}^d ( \mid z_j \mid + \mid w_j \mid )^2 \right)^{ \frac{1}{2} } \le \left( \sum_{ j = 1 }^d \mid z_j \mid^2 \right)^{ \frac{1}{2} } + \left( \sum_{ j = 1 }^d \mid w_j \mid^2 \right)^{ \frac{1}{2} }= d(z,0) + d(w,0) $$How/why does this hold true?
Help will be appreciated ...

Peter========================================================================================Relevant to the above post is Proposition 11.2.3 and Corollary 11.1.4 ... so I am providing both ... as follows:View attachment 7907Hope the above scanned text helps readers understand the post ...

Peter
 
Physics news on Phys.org
Peter said:
Question 1

Can someone please explain exactly why we have:

$$d( z + w , 0 ) = \left( \sum_{ j = 1 }^d \mid z_j + w_j \mid^2 \right)^{ \frac{1}{2} } \le \left( \sum_{ j = 1}^d ( \mid z_j \mid + \mid w_j \mid )^2 \right)^{ \frac{1}{2} } $$

How/why does this hold true?
The equality $$d( z + w , 0 ) = \left( \sum_{ j = 1 }^d | z_j + w_j |^2 \right)^{\!\! 1/2 }$$ is the definition of $d(z+w,0)$ (the $0$ in $d(z+w,0)$ is the zero in $\Bbb{C}^d$, so it is actually $(0,0,\ldots,0)$).

The inequality $$ \left( \sum_{ j = 1 }^d | z_j + w_j |^2 \right)^{ \!\!1/2 } \leqslant \left( \sum_{ j = 1}^d (| z_j| + |w_j|)^2 \right)^{\!\!1/2}$$ follows from the fact that $| z_j + w_j | \leqslant | z_j| + |w_j|$, which is the triangle inequality for complex numbers.

Peter said:
Question 2

Can someone please explain exactly why we have:

$$\left( \sum_{ j = 1}^d ( \mid z_j \mid + \mid w_j \mid )^2 \right)^{ \frac{1}{2} } \le \left( \sum_{ j = 1 }^d \mid z_j \mid^2 \right)^{ \frac{1}{2} } + \left( \sum_{ j = 1 }^d \mid w_j \mid^2 \right)^{ \frac{1}{2} }= d(z,0) + d(w,0) $$

How/why does this hold true?
Since $|z_j|$ and $|w_j|$ are real, this inequality is just an application of the triangle inequality in $\Bbb{R}^d$, which is contained in Corollary 11.1.4.
 
Opalg said:
The equality $$d( z + w , 0 ) = \left( \sum_{ j = 1 }^d | z_j + w_j |^2 \right)^{\!\! 1/2 }$$ is the definition of $d(z+w,0)$ (the $0$ in $d(z+w,0)$ is the zero in $\Bbb{C}^d$, so it is actually $(0,0,\ldots,0)$).

The inequality $$ \left( \sum_{ j = 1 }^d | z_j + w_j |^2 \right)^{ \!\!1/2 } \leqslant \left( \sum_{ j = 1}^d (| z_j| + |w_j|)^2 \right)^{\!\!1/2}$$ follows from the fact that $| z_j + w_j | \leqslant | z_j| + |w_j|$, which is the triangle inequality for complex numbers.Since $|z_j|$ and $|w_j|$ are real, this inequality is just an application of the triangle inequality in $\Bbb{R}^d$, which is contained in Corollary 11.1.4.
Thanks Opalg ...

... understand your points regarding Question 1 ...... still reflecting on what you have written regarding Question 2 ...

Thanks again for your help ...

Peter
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K