I The time derivative of kinetic energy

AI Thread Summary
The discussion focuses on the time derivative of kinetic energy, expressed as T(𝑝) = 𝑝²/(2m), and its relationship to force. It establishes that the derivative dT/dt equals 𝑣·𝑭, linking kinetic energy to Newton's second law where 𝑝 = m𝑣 and 𝑭 = d𝑝/dt. The calculations show that the change in kinetic energy can be derived from the momentum and force relationship. This reinforces the connection between energy, momentum, and force in classical mechanics. The thread emphasizes the mathematical derivation and conceptual understanding of these physical principles.
LagrangeEuler
Messages
711
Reaction score
22
Lets consider T(\vec{p})=\frac{\vec{p}^2}{2m}=\frac{\vec{p}\cdot \vec{p}}{2m}. Then \frac{dT}{dt}=\vec{v}\cdot \vec{F}.
And if we consider
T=\frac{p^2}{2m} than \frac{dT}{dt}=\frac{1}{2m}2p\frac{dp}{dt}
Could I see from that somehow that this is \vec{v}\cdot \vec{F}?
 
Physics news on Phys.org
LagrangeEuler said:
Lets consider T(\vec{p})=\frac{\vec{p}^2}{2m}=\frac{\vec{p}\cdot \vec{p}}{2m}. Then \frac{dT}{dt}=\vec{v}\cdot \vec{F}.
And if we consider
T=\frac{p^2}{2m} than \frac{dT}{dt}=\frac{1}{2m}2p\frac{dp}{dt}
Could I see from that somehow that this is \vec{v}\cdot \vec{F}?
Well, ##\vec {p} = m \vec {v}## and ##\vec F = \frac{d\vec p}{dt}## is Newton's second law.
 
Last edited:
  • Like
Likes vanhees71, gmax137, Ibix and 1 other person
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top