I The time derivative of kinetic energy

AI Thread Summary
The discussion focuses on the time derivative of kinetic energy, expressed as T(𝑝) = 𝑝²/(2m), and its relationship to force. It establishes that the derivative dT/dt equals 𝑣·𝑭, linking kinetic energy to Newton's second law where 𝑝 = m𝑣 and 𝑭 = d𝑝/dt. The calculations show that the change in kinetic energy can be derived from the momentum and force relationship. This reinforces the connection between energy, momentum, and force in classical mechanics. The thread emphasizes the mathematical derivation and conceptual understanding of these physical principles.
LagrangeEuler
Messages
711
Reaction score
22
Lets consider T(\vec{p})=\frac{\vec{p}^2}{2m}=\frac{\vec{p}\cdot \vec{p}}{2m}. Then \frac{dT}{dt}=\vec{v}\cdot \vec{F}.
And if we consider
T=\frac{p^2}{2m} than \frac{dT}{dt}=\frac{1}{2m}2p\frac{dp}{dt}
Could I see from that somehow that this is \vec{v}\cdot \vec{F}?
 
Physics news on Phys.org
LagrangeEuler said:
Lets consider T(\vec{p})=\frac{\vec{p}^2}{2m}=\frac{\vec{p}\cdot \vec{p}}{2m}. Then \frac{dT}{dt}=\vec{v}\cdot \vec{F}.
And if we consider
T=\frac{p^2}{2m} than \frac{dT}{dt}=\frac{1}{2m}2p\frac{dp}{dt}
Could I see from that somehow that this is \vec{v}\cdot \vec{F}?
Well, ##\vec {p} = m \vec {v}## and ##\vec F = \frac{d\vec p}{dt}## is Newton's second law.
 
Last edited:
  • Like
Likes vanhees71, gmax137, Ibix and 1 other person
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
Back
Top