Thermal Physics Kittel chapter 6 -- Entropy of mixing problem

  • Thread starter Thread starter bluepilotg-2_07
  • Start date Start date
  • Tags Tags
    Entropy Thermal
bluepilotg-2_07
Messages
11
Reaction score
2
Homework Statement
Suppose that a system of N atoms of type A is placed
in diffusive contact with a system of N atoms of type B at the same temperature
and volume. Show that after diffusive equilibrium is reached the total entropy
is increased by 2N log 2. The entropy increase 2N log 2 is known as the entropy
of mixing. If the atoms are identical (A = B), show that there is no increase in
entropy when diffusive contact is established. The difference in the results has
been called the Gibbs paradox.
Relevant Equations
sigma = log(g), mu = tau*log(N/V*n_Q), sigma = N[log(V*n_Q/N)+5/2]
I've been working on this problem for the past 3 days. I have other papers with different ways of tackling the problem. However, I just cannot get to the answer (change in entropy = 2Nlog(2)).
unnamed.jpg
 
Physics news on Phys.org
Welcome to PF.

Your attached picture of your work is very light and hard to read. Can you upload a better image please?

Also, I will send you a message with tips for posting math equations at PF using LaTeX. That is a much better way to show your work in the future here. :smile:
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top