Thermodynamics of a Heat Engine - (First/Second Law)

AI Thread Summary
The discussion revolves around the thermodynamic principles governing heat engines, specifically addressing why two bodies in a problem are at the same temperature. Participants explore the implications of having three bodies at different temperatures, suggesting that this scenario allows for the continuous heating of the hottest body. The use of a Carnot engine is highlighted as a method to increase temperature through work. The conversation emphasizes the importance of temperature differentials in thermodynamic processes. Understanding these principles is crucial for analyzing heat engines effectively.
laser1
Messages
166
Reaction score
23
Homework Statement
desc
Relevant Equations
desc
1727381923813.png

and the solutions:
1727381943801.png


I am not sure why two of the bodies are at the same temperature to end with. I am pretty certain that they don't have to be - but the author of the problem set it this way for some reason I'm missing (my guess). My reasoning: Put 100 K and 300 K together for a short time, but not so long that they have the same temperature. Voila! All three bodies have different temperatures. Thanks
 
Physics news on Phys.org
laser1 said:
I am not sure why two of the bodies are at the same temperature to end with.
Hint: Suppose all three bodies have different temperatures. Can you see how it would always be possible to raise the temperature of the hottest of the three?
 
  • Like
Likes Lnewqban and laser1
TSny said:
Hint: Suppose all three bodies have different temperatures. Can you see how it would always be possible to raise the temperature of the hottest of the three?
Ah yeah fair because you could always increase it by using a Carnot engine and raise the temp. due to work! Thanks
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top