Thermodynamics Regenerative Rankine Cycle

Click For Summary
SUMMARY

The discussion centers on the regenerative Rankine cycle in a steam power plant, specifically focusing on the extraction of steam for feedwater heating. The steam enters the turbine at 8.0 MPa and 350°C, with a condenser pressure at 40°C. Participants clarify that the extraction of steam refers to the removal of steam from the turbine, which can occur at various pressures, such as 1.2 MPa. The user successfully resolves their confusion by determining that the extraction pressure of 700 kPa should be replaced with 1.2 MPa for their calculations.

PREREQUISITES
  • Understanding of the Rankine cycle and its components
  • Knowledge of thermodynamic principles, including pressure and temperature relationships
  • Familiarity with steam properties and phase changes
  • Ability to perform thermodynamic calculations related to power cycles
NEXT STEPS
  • Study the thermodynamic properties of water and steam using tables or software
  • Learn how to calculate turbine work output in regenerative Rankine cycles
  • Explore the impact of varying extraction pressures on thermal efficiency
  • Investigate the design and operation of feedwater heaters in steam power plants
USEFUL FOR

Engineers, thermodynamics students, and professionals involved in power plant design and optimization will benefit from this discussion, particularly those focusing on steam cycle efficiency and feedwater heating techniques.

Kamuna
Messages
7
Reaction score
1
Misplaced Homework Thread
Summary:: regenerative rankine cycle

Im a bit troubled by my home activity recently and maybe i could use some help this is the problem :

In a steam power plant operating on regenerative Rankine cycle with one contact feedwater heater, steam enters the turbine at 8.0 MPa, 350 C and condensed in the condenser with a pressure at saturated temperature of 40 C. Some steam is bled at 700 kPa for feedwater heating. There are 27.5 kg/s of steam entering the high-pressure turbine, determine:

a. extracted steam flow per second
b. turbine work output in kW
c. thermal efficiency of the cycle
( Home Activity : If the extraction of steam is at 1.2 MPa , determine a b, & c)

My question is what is the meaning of the extraction of steam and where would i use the 1.2Mpa or should i change a variable in the given problem to 1.2Mpa? Thanks in advance
 
Physics news on Phys.org
Kamuna said:
what is the meaning of the extraction of steam
extraction of steam is the opening of the valve between boiler and turbine, I would say.
Am I right in understanding this exercise was done (in class, or otherwise) with extraction at 8 MPa and now you are asked to do the same exercise at 1.2 MPa ?
 
Last edited by a moderator:
BvU said:
extraction of steam is the opening of the valve between boiler and turbine, I would say.
Am I right in understanding this exercise was done (in class, or otherwise) with extraction at 8 MPa and now you are asked to do the same exercise at 1.2 MPa ?

Is this the same question as https://www.physicsforums.com/threads/regenerative-rankine-cycle.1013703/ ?

##\ ##
the 8Mpa has a solution already but our home activity was if the extraction is 1.2Mpa. So I just need to replace the 8Mpa into 1.2Mpa? I am still a bit confused in the topic so i don't know what extraction of steam means and still don't know where to replace the given
 
Kamuna said:
dont know what extraction of steam means
Extraction, translated literally, means: removal (the taking out) from ex (out) and traction (pulling).

I wrongly said 'between boiler and turbine': it can just as well be between a turbine stage and the feed water heater.
(And must humbly admit that that is the more sensible exercise: with 12 Bar instead of 7 Bar)

Do you have a flowchart of your process at 80 Bar ? Does it look like https://www.electrical4u.com/rankine-cycle-and-re-generative-feed-heating/#:~:text=In%20a%20Rankine%20regenerative%20cycle,)%2C%20where%20it%20is%20extracted. ?

##\ ##
 
BvU said:
Extraction, translated literally, means: removal (the taking out) from ex (out) and traction (pulling).

I wrongly said 'between boiler and turbine': it can just as well be between a turbine stage and the feed water heater.
(And must humbly admit that that is the more sensible exercise: with 12 Bar instead of 7 Bar)

Do you have a flowchart of your process at 80 Bar ? Does it look like https://www.electrical4u.com/rankine-cycle-and-re-generative-feed-heating/#:~:text=In%20a%20Rankine%20regenerative%20cycle,)%2C%20where%20it%20is%20extracted. ?

##\ ##
yep, it looked like that and thanks anyway I've already solved it it's just that the 700kpa needs to be replaced with 1.2Mpa and now I'm good so thanks again for helping me
 
  • Like
Likes   Reactions: BvU

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K