MHB This isn't even funny how hard it is

  • Thread starter Thread starter gilamonster
  • Start date Start date
  • Tags Tags
    even Funny Hard
AI Thread Summary
The discussion focuses on calculating the total surface area of a cylinder using the formula A = 2πr² + 2πrh. Given the radius r = (4x + 2)/2 and height h = 2x, the equation is set equal to 182π to solve for x. After substituting r and h into the surface area formula, the resulting quadratic equation 16x² + 12x - 181 = 0 is derived. The participants discuss solving this quadratic to find the value of x, which is then used to determine the diameter of the cylinder. The calculations emphasize the importance of correctly applying geometric formulas in problem-solving.
Mathematics news on Phys.org
total surface area of a cylinder, $A = 2\pi r^2 + 2\pi rh$

from the sketch, $r = \dfrac{4x+2}{2}$ and $h=2x$

substitute for $r$ and $h$ and set equal to $182\pi$, solve for $x$, then determine the diameter

a4840bb5-1a32-4997-8d1f-28992a862a2b.PNG
 
That's pretty straight forward. The diameter is 4x+ 2 so the radius is 2x+ 1. The top and bottom each have area $\pi r^2= \pi (2x+ 1)^2$. That totals $2\pi(2x+ 1)^2$. For the side, imagine cutting down the side and "unrolling" it. You get a rectangle with width 2x and length equal to the circumferce of the circles $2\pi r= \pi(4x+ 2)$, That area is $\pi(8x^2+ 4x)$ so the total area is $2\pi(2x+ 1)^2+ \pi(8x^2+4x)= \pi(8x^2+ 8x+ 1+ 8x^2+ 4x)= \pi(16x^2+ 12c+ 1)= 182\pi$.

Dividing both sides by $\pi$, $16x^2+12x+ 1= 182$. Subtracting 182 from both sides, $16x^2+ 12x- 181= 0$. Solve that quadratic equation for x.
 
$2\pi (2x+1)^2 + \pi(8x^3+4x) = \pi(8x^2+8x + {\color{red}2} +8x^2+4x)$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top