MHB This isn't even funny how hard it is

  • Thread starter Thread starter gilamonster
  • Start date Start date
  • Tags Tags
    even Funny Hard
Click For Summary
The discussion focuses on calculating the total surface area of a cylinder using the formula A = 2πr² + 2πrh. Given the radius r = (4x + 2)/2 and height h = 2x, the equation is set equal to 182π to solve for x. After substituting r and h into the surface area formula, the resulting quadratic equation 16x² + 12x - 181 = 0 is derived. The participants discuss solving this quadratic to find the value of x, which is then used to determine the diameter of the cylinder. The calculations emphasize the importance of correctly applying geometric formulas in problem-solving.
Mathematics news on Phys.org
total surface area of a cylinder, $A = 2\pi r^2 + 2\pi rh$

from the sketch, $r = \dfrac{4x+2}{2}$ and $h=2x$

substitute for $r$ and $h$ and set equal to $182\pi$, solve for $x$, then determine the diameter

a4840bb5-1a32-4997-8d1f-28992a862a2b.PNG
 
That's pretty straight forward. The diameter is 4x+ 2 so the radius is 2x+ 1. The top and bottom each have area $\pi r^2= \pi (2x+ 1)^2$. That totals $2\pi(2x+ 1)^2$. For the side, imagine cutting down the side and "unrolling" it. You get a rectangle with width 2x and length equal to the circumferce of the circles $2\pi r= \pi(4x+ 2)$, That area is $\pi(8x^2+ 4x)$ so the total area is $2\pi(2x+ 1)^2+ \pi(8x^2+4x)= \pi(8x^2+ 8x+ 1+ 8x^2+ 4x)= \pi(16x^2+ 12c+ 1)= 182\pi$.

Dividing both sides by $\pi$, $16x^2+12x+ 1= 182$. Subtracting 182 from both sides, $16x^2+ 12x- 181= 0$. Solve that quadratic equation for x.
 
$2\pi (2x+1)^2 + \pi(8x^3+4x) = \pi(8x^2+8x + {\color{red}2} +8x^2+4x)$
 

Similar threads