- #1

- 7,943

- 1,782

http://arxiv.org/abs/1309.1379

Experimental Three-Particle Quantum Nonlocality under Strict Locality Conditions

C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. L. Higgins, Z. Yan, C. J. Pugh, J.-P. Bourgoin, R. Prevedel, L. K. Shalm, L. Richards, N. Gigov, R. Laflamme, G. Weihs, T. Jennewein, K. J. Resch

(Submitted on 5 Sep 2013)

"Quantum correlations are critical to our understanding of nature, with far-reaching technological and fundamental impact. These often manifest as violations of Bell's inequalities, bounds derived from the assumptions of locality and realism, concepts integral to classical physics. Many tests of Bell's inequalities have studied pairs of correlated particles; however, the immense interest in multi-particle quantum correlations is driving the experimental frontier to test systems beyond just pairs. All experimental violations of Bell's inequalities to date require supplementary assumptions, opening the results to one or more loopholes, the closing of which is one of the most important challenges in quantum science. Individual loopholes have been closed in experiments with pairs of particles and a very recent result closed the detection loophole in a six ion experiment. No experiment thus far has closed the locality loopholes with three or more particles. Here, we distribute three-photon Greenberger-Horne-Zeilinger entangled states using optical fibre and free-space links to independent measurement stations. The measured correlations constitute a test of Mermin's inequality while closing both the locality and related freedom-of-choice loopholes due to our experimental configuration and timing. We measured a Mermin parameter of 2.77 +/- 0.08, violating the inequality bound of 2 by over 9 standard deviations, with minimum tolerances for the locality and freedom-of-choice loopholes of 264 +/- 28 ns and 304 +/- 25 ns, respectively. These results represent a significant advance towards definitive tests of the foundations of quantum mechanics and practical multi-party quantum communications protocols."

The write up features some tremendous detail on the setup, which is quite complex. Nice diagrams too. They "report the experimental violation of the three-particle Mermin’s inequality closing both the locality and freedom-of-choice loopholes, having to make only the fair-sampling assumption." GHZ experiments are interesting because each individual trial is expected to yield a result in conflict with local realistic descriptions. Bell tests, by contrast, show this conflict only as a statistical difference over a large number of trials.

Enjoy!