• Support PF! Buy your school textbooks, materials and every day products Here!

Thrust force of a rocket ejecting mass

  • Thread starter Emspak
  • Start date
  • #1
243
1

Homework Statement



OK, this seems simple but I want to make sure I am not doing something totally wrong. The problem says: use the conservation of mass of a system of many particles to shoe that the thrust force of a rocket that ejects mass at rate [itex]\frac{dm}{dt}[/itex] is equal to [tex]F=-v_e \frac{dm}{dt}[/tex] where [itex]v_e[/itex] is the velocity of the mass ejected.


The Attempt at a Solution



I looked at it this way: momentum is conserved so if we start with mass m of the rocket, mv = k (where k is a constant).

SInce we have a simple differential equation [itex]F=-v_e \frac{dm}{dt}[/itex] it can be integrated as [itex]-m v_e = Ft[/itex]. Taking the derivative w/r/t time we get [itex]-m \frac {d v_e}{dt} = F[/itex]

That gets us the F=ma part of the equation, showing that that works. But I notice that if momentum is a k (constant) then [itex]-m v_e = k = Ft[/itex].

There's a step I am missing here I think. I feel like I am almost there. Any hep -- and anyone telling me I have approached this in entirely the wrong way -- would be appreciated.
 

Answers and Replies

  • #2
D H
Staff Emeritus
Science Advisor
Insights Author
15,393
683
The momentum of the rocket is *not* a conserved quantity. What you are missing is that to look at things from the perspective of conservation of momentum you need to look at the rocket+exhaust cloud system.

Another issue is how you look at force. There is a direct connection with the conservation laws if you use ##\vec F=d(m\vec v)/dt##. However, this means force is a frame-dependent quantity if mass is not constant. Force becomes frame invariant if you use ##\vec F = m\vec a##, but now the immediate connection with the conservation laws is lost.

It might help if you look at things from the perspective of an inertial frame that is co-moving with the rocket (i.e., an inertial frame in which the rocket's instantaneous velocity is zero). The F=dp/dt versus F=ma imbroglio vanishes with this choice.
 
  • #3
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
9,970
131
A very simple version, alon DH's reasoning, is the following:

Let us move along with the rocket through a tiny time Dt, in which a little mass Dm has been ejected with a velocity, relative to the rocket, v_e.

That little packet of mass has expreniced a momentum change, what we call an impulse, of Dmv_e

Impulse equals Dt*F, so the little packet of mass experienced the force:

F=v_e*Dm/Dt.

Now, by Newton's 3 law, you'll get the result for the thrust force for the rocket!
---
 
  • #4
243
1
Thanks to you both. I felt like this was a much simpler problem than it looked...
 

Related Threads on Thrust force of a rocket ejecting mass

  • Last Post
Replies
14
Views
11K
  • Last Post
Replies
9
Views
908
  • Last Post
Replies
10
Views
6K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
3
Views
12K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
9
Views
4K
  • Last Post
Replies
1
Views
2K
Replies
13
Views
5K
Top