Time as a fractional spatial dimension

Click For Summary
SUMMARY

The discussion centers on the concept of time as a fractional spatial dimension, proposing that the universe may possess 3.139 dimensions, where 0.139 represents time. This hypothesis suggests that time could be inflating into a full dimension, correlating with the universe's expansion. The mathematical framework includes a time-dependent distance formula, distance(τ) = √(x² + y² + z² + (1/2)τ²w²), and explores the implications of time potentially moving backwards, which could explain the uniform distribution of matter. The conversation highlights the need for a classical definition of dimensions, contrasting it with fractal dimensions.

PREREQUISITES
  • Understanding of dimensional analysis in physics
  • Familiarity with mathematical concepts of distance and dimensionality
  • Knowledge of fractals and their definitions of dimensions
  • Basic grasp of the expansion of the universe and its implications
NEXT STEPS
  • Research the mathematical implications of fractional dimensions in physics
  • Study the relationship between time and spatial dimensions in cosmology
  • Explore the concept of fractals and their application in dimensional analysis
  • Investigate the current theories on the expansion of the universe and its effects on dimensionality
USEFUL FOR

Physicists, mathematicians, cosmologists, and anyone interested in theoretical physics and the nature of time and dimensions.

dimensionless
Messages
460
Reaction score
1
I've been day dreaming about this idea for a month or two. There are many hypothesises that describe the universe in some higher number of dimensions. As far as I know, this is always an integer number of dimensions.

I've been wondering if it is possible for the universe to have a fractional number of dimensions, say 3.139 dimensions, where there are 3 spatial dimensions plus the 0.139. The 0.139 could be time. It's fractionality would explain why it seems to behave in a different manner than the other dimensions.

The flow of time could actually be the dimensionality of the universe increasing towards four dimensions. In other words, time is inflating into a full dimension. This would also explain why the universe is expanding because

<br /> distance = \sqrt{x^2+y^2+z^2+t^2} &gt; \sqrt{x^2+y^2+z^2+(t-\alpha)^2}<br />

and because t is increasing. In reality, time would have to increase at a rate of (if I did my math right)

t(\tau) = \frac{1}{2}\tau^2

to account for linearly expanding space. This leads to a time-dependent distance formula given by

distance(\tau) = \sqrt{x^2+y^2+z^2+\frac{1}{2}\tau^{2}w^{2}}

But this is more in the finer details.

Conversely, it could be that time is actually moving backwards and the dimensionality of the universe is decreasing. This would easily explain the relatively even distribution of matter in the universe. In this case, the perceived expansion of the universe could be some kind of "conservation of space."

I just thought that this was interesting because it unifies space and time, and it also explains why the universe is expanding.

I'm not posting this to the personal research forum because it is largely speculative, and I'm really looking more for comments and criticism.
 
Space news on Phys.org
What you've written down wouldn't mathematically represent a non-integer number of dimensions. If you want to learn about things with non-integer dimensions, read up on fractals.
 
The expansion of the universe results in a change in the spatial separation between two points:

d = \sqrt{x(t+\Delta t)^2 + y(t+\Delta t)^2 + z(t+\Delta t)^2} &gt; \sqrt{x(t)^2 + y(t)^2 + z(t)^2}

not the distance you've given.
 
bapowell said:
The expansion of the universe results in a change in the spatial separation between two points:

d = \sqrt{x(t+\Delta t)^2 + y(t+\Delta t)^2 + z(t+\Delta t)^2} &gt; \sqrt{x(t)^2 + y(t)^2 + z(t)^2}

not the distance you've given.

Sorry. What I meant was (and this is slightly different than my earlier notation):

d = \sqrt{ {\Delta x}^2 + {\Delta y}^2 + {\Delta z}^2 + \tau {\Delta w}^2} &gt; \sqrt{{\Delta x}^2 + {\Delta y}^2 + {\Delta z}^2 + (\tau-h) {\Delta w}^2}

where

0 \leq \tau \leq 1

This is intended to give the distance between two stationary points as a function of time, where the universe is expanding and the number of spatial dimensions n is

3 &lt; n &lt; 4

or

n = 3 + \tau

EDIT:

and the dimensions are x, y, z, and w.
 
Last edited:
dimensionless said:
Sorry. What I meant was (and this is slightly different than my earlier notation):

d = \sqrt{ {\Delta x}^2 + {\Delta y}^2 + {\Delta z}^2 + \tau {\Delta w}^2} &gt; \sqrt{{\Delta x}^2 + {\Delta y}^2 + {\Delta z}^2 + (\tau-h) {\Delta w}^2}

where

0 \leq \tau \leq 1

This is intended to give the distance between two stationary points as a function of time, where the universe is expanding and the number of spatial dimensions n is

3 &lt; n &lt; 4
What you have written down are three spatial and one time dimension. Those equations do not represent a change in the number of dimensions.
 
Chalnoth said:
What you've written down wouldn't mathematically represent a non-integer number of dimensions. If you want to learn about things with non-integer dimensions, read up on fractals.

Fractal dimensions require that one redefine the term dimension. I'm trying to use a more classical definition.
 
dimensionless said:
Fractal dimensions require that one redefine the term dimension. I'm trying to use a more classical definition.
Yes, but all you've done is selected a different choice of coordinates in four dimensions.
 
I may have been editing my post when you wrote this.

Chalnoth said:
What you have written down are three spatial and one time dimension. Those equations do not represent a change in the number of dimensions.

It is intended to 3+\tau spatial dimensions. When \tau = 1, there are then 4 spatial dimensions and every molecule and every atom in the universe is ripped apart.
 
Chalnoth said:
Yes, but all you've done is selected a different choice of coordinates in four dimensions.

But because there are a fractional number of spatial dimensions, there are 3 +\tau dimensions being projected on to three. Only when there are four full dimensions x, y, z, and w, will a point have four spatial coordinates.
 
Last edited:
  • #10
dimensionless said:
But because there are a fractional number of spatial dimensions, there are 3 +\tau[/tex} dimensions being projected on to three. Only when there are four full dimensions x, y, z, and w, will a point have four spatial coordinates.
<br /> Except your line element includes the w coordinate, and thus there are always four spatial coordinates in this scheme.
 
  • #11
dimensionless said:
I'm not posting this to the personal research forum because it is largely speculative, and I'm really looking more for comments and criticism.

There is a personal research forum? If so, please let me know where I can find it. Thanks.
 
  • #12
If you want non integer dimensions look at fractals. But I do not see what non integer dimensions have to do with time.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
548
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 20 ·
Replies
20
Views
4K