Time Independence of the Momentum Uncertainty for a Free Particle Wave

Click For Summary
In a potential-free scenario (V(x) = 0), the momentum expectation value remains constant over time, leading to the conclusion that both the momentum squared expectation value and the momentum uncertainty (σ_p) are also time-invariant. The argument relies on the kinetic energy formula, asserting that the total kinetic energy of a freely moving particle is conserved, thus implying no work is done. Some participants question the assumption of kinetic energy conservation and the relevance of "work" in quantum mechanics. An alternative approach suggested involves solving the time-dependent Schrödinger equation in momentum representation to analyze σ_p over time. The discussion emphasizes the relationship between momentum, kinetic energy, and the implications of time independence in quantum mechanics.
uxioq99
Messages
11
Reaction score
4
Homework Statement
Prove that ##\frac{\sigma_p}{dt} = 0## for a freely moving wave packet in the absence of a potential. (Here, ##\sigma_p## denotes momentum uncertainty.)
Relevant Equations
##\frac{\sigma_p}{dt} = 0##
Mine is a simple question, so I shall keep development at a minimum. If a particle is moving in the absence of a potential (##V(x) = 0##), then
##\frac{\langle\hat p \rangle}{dt} = \langle -\frac{\partial V}{\partial x}\rangle=0##
will require that the momentum expectation value remains constant in time. Now, I must prove that ##\langle \hat p^2 \rangle## is also constant in time. I used the kinetic energy formula ##\hat T = \frac{\hat p^2}{2m}## to assert that ##\frac{d\langle p \rangle}{dt} = 2m\frac{d\langle T\rangle}{dt}=0## because the total kinetic energy of a freely moving particle is conserved. I justified my claim by arguing that there cannot be any work in the absence of a potential so that potential must be constant. Then, the momentum uncertainty ##\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2}## is formed from two functions that are constant in time is consequently time-invariant itself.
 
Physics news on Phys.org
It seems all right to me.  You may check it directly from momentum wavefunction which you get from Gaussian coordinate wavefunction with growing dispersion, by Fourier transform.
 
Last edited:
uxioq99 said:
Homework Statement:: Prove that ##\frac{\sigma_p}{dt} = 0## for a freely moving wave packet in the absence of a potential. (Here, ##\sigma_p## denotes momentum uncertainty.)
Relevant Equations:: ##\frac{\sigma_p}{dt} = 0##

Mine is a simple question, so I shall keep development at a minimum. If a particle is moving in the absence of a potential (##V(x) = 0##), then
##\frac{\langle\hat p \rangle}{dt} = \langle -\frac{\partial V}{\partial x}\rangle=0##
will require that the momentum expectation value remains constant in time. Now, I must prove that ##\langle \hat p^2 \rangle## is also constant in time. I used the kinetic energy formula ##\hat T = \frac{\hat p^2}{2m}## to assert that ##\frac{d\langle p \rangle}{dt} = 2m\frac{d\langle T\rangle}{dt}=0## because the total kinetic energy of a freely moving particle is conserved. I justified my claim by arguing that there cannot be any work in the absence of a potential so that potential must be constant. Then, the momentum uncertainty ##\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2}## is formed from two functions that are constant in time is consequently time-invariant itself.
I'm not totally convinced. Why can you assume conservation of KE? The concept of "work" is not very QM.

An alternative is to consider the relationship between momentum and a potential-free Hamiltonian.
 
I'd solve the time-dependent Schrödinger equation in momentum representation, given an arbitrary square-integrable ##\psi(t=0,\vec{p})=\psi_0(\vec{p})## and then think about, how to calculate ##\sigma_p(t)## with it.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
3K
Replies
9
Views
3K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K