Time-Scaling vs Frequency Shift

  • Thread starter Thread starter JustStudying
  • Start date Start date
  • Tags Tags
    Frequency Shift
Click For Summary
Time-scaling and frequency shift are distinct concepts in Fourier transforms. Time-scaling involves lengthening the period of a signal, making it take longer to complete one cycle, while frequency shift refers to uniformly increasing or decreasing the frequency components of a signal by an offset. Although both concepts can yield similar results for single frequency components, they are generally not equivalent for signals with multiple frequency components. In time-scaling, the separation between frequencies changes, whereas frequency shifting maintains the original separation. Understanding these differences is crucial for analyzing signal properties accurately.
JustStudying
Messages
27
Reaction score
0
I'm learning about properties of Fourier transforms at the moment, and I've come across 2 terms "time-scaling" and frequency shift.

A quick google search of time-scaling suggests that it is when I make the period of my signal longer (i.e a sine wave would take longer to finish 1 cycle)

but no results seem to come up for frequency shift
- but the name seems to imply changing the frequency of the signal - but isn't that time-scaling?!

thanks again!
 
Mathematics news on Phys.org
A frequency shift means that the frequency components of the function have all been "shifted" (increased or decreased) by the same offset. So for example, if ##f(x) = \sin(\omega_1 x) + \sin(\omega_2 x)##, then if we add an offset ##\omega_0## to both ##\omega_1## and ##\omega_2##, we obtain a frequency-shifted version: ##g(x) = \sin((\omega_1 + \omega_0)x) + \sin((\omega_2 + \omega_0)x)##.

In general, this is NOT equivalent to time-scaling. However, in the special case of a function with a single frequency component, the two notions are equivalent. For example, if ##f(x) = \sin(\omega x)## and we shift the frequency by an offset of ##\omega_0##, the result is ##g(x) = \sin((\omega + \omega_0) x)##. If we define
$$c = \frac{\omega + \omega_0}{\omega} = 1 + \frac{\omega_0}{\omega}$$
then we may equivalently write ##g(x) = \sin(\omega cx)##, which is just ##f(cx)##, i.e., a time scaled version of ##f##.

But as you can see from the example with two frequency components in the first paragraph, the two notions are not generally equivalent. If we time scale ##f(x) = \sin(\omega_1 x) + \sin(\omega_2 x)## to obtain ##f(cx) = \sin(\omega_1 cx) + \sin(\omega_2 cx)##, then we still have two frequency components, but the frequencies are now separated by ##c(\omega_2 - \omega_1)## whereas they were originally separated by ##\omega_2 - \omega_1##. Compare this with the frequency shifted version, where the separation remains the same: ##(\omega_2 + \omega_0) - (\omega_1 + \omega_0) = \omega_2 - \omega_1##.
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 47 ·
2
Replies
47
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
Replies
2
Views
3K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 139 ·
5
Replies
139
Views
10K